Abstract:
One or more techniques and/or systems are provided for to creating an avoidance zone spatially proximate a venue, where the avoidance zone is created based upon identifying road segments where increased traffic congestion is expected due to an event at the venue. Information pertaining to the avoidance zone, such as a description of road segments to avoid and/or expected travel delays, may be provided to a route planner configured to develop vehicle routes. In this way, the route planner can take into consideration the impact of events on one or more road segments when planning a route.
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
In many vehicular control contexts, a vehicle may monitor the vehicle input control from a driver to detect warning conditions that entail a warning to the user and/or an automatic mitigating action (e.g., detecting hard braking that causes brake lockup, and automatically activating anti-lock braking). Warning and mitigation techniques may address the instant driving conditions, but may not the user driving behavior that caused the condition (e.g., a driving style of the user that resulted in hard braking, such as excessive speed for current driving conditions). Presented herein are techniques for monitoring the user driving behavior of the user in various driving contexts, and presenting driving suggestions of alternative driving behaviors providing advantages over the current user driving behavior of the user. The presentation of the alternative driving behaviors to the user may facilitate changes in user driving behavior that improve the safety, efficiency, and/or comfort of the driving experience.
Abstract:
In many vehicular control contexts, a vehicle may monitor the vehicle input control from a driver to detect warning conditions that entail a warning to the user and/or an automatic mitigating action (e.g., detecting hard braking that causes brake lockup, and automatically activating anti-lock braking). Warning and mitigation techniques may address the instant driving conditions, but may not the user driving behavior that caused the condition (e.g., a driving style of the user that resulted in hard braking, such as excessive speed for current driving conditions). Presented herein are techniques for monitoring the user driving behavior of the user in various driving contexts, and presenting driving suggestions of alternative driving behaviors providing advantages over the current user driving behavior of the user. The presentation of the alternative driving behaviors to the user may facilitate changes in user driving behavior that improve the safety, efficiency, and/or comfort of the driving experience.
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
One or more techniques and/or systems are provided for parking space routing. For example, parking data for a parking region, such as a parking lot, may be obtained from one or more data sources (e.g., vehicle sensor data, a parking lot camera, parking meter transaction data, etc.). Routes from a current location of a vehicle to available parking spaces within the parking region may be computed. The routes may be ranked based upon various criteria, such as convenience, congestion, travel time, travel distance, a parking space fill order, etc. A route, having a rank above a threshold (e.g., a highest ranked route), may be provided to a driver of the vehicle, such as through a vehicle navigation unit, a mobile device, a wearable device, etc. The route may be provided to autonomous driving functionality of the vehicle for automatic routing and navigation of the vehicle to the parking space.
Abstract:
One or more techniques and/or systems are provided for notifying drivers to assume manual vehicle control of vehicles. For example, sensor data is acquired from on-board vehicles sensors (e.g., radar, sonar, and/or camera imagery of a crosswalk) of a vehicle that is in an autonomous driving mode. In an example, the sensor data is augmented with driving condition data aggregated from vehicle sensor data of other vehicles (e.g., a cloud service collects and aggregates vehicle sensor data from vehicles within the crosswalk to identify and provide the driving condition data to the vehicle). The sensor data (e.g., augmented sensor data) is evaluated to identify a driving condition of a road segment, such as the crosswalk (e.g., pedestrians protesting within the crosswalk). Responsive to the driving condition exceeding a complexity threshold for autonomous driving decision making functionality, a driver alert to assume manual vehicle control may be provided to a driver.
Abstract:
One or more techniques and/or systems are provided for slowdown detection. Location data received from vehicles traveling a road is evaluated to identify a road segment associated with vehicle speeds below a threshold. A space-time diagram is generated, and location data associated with vehicles traveling the road segment are plotted within the space-time diagram. The space-time diagram is processed using a convolutional neural network to determine a probability that the space-time diagram illustrates a slowdown. If the probability that the space-time diagram illustrates the slowdown is greater than a threshold, then a notification of the slowdown is transmitted to one or more computing devices associated with vehicles that may encounter the slowdown.