Abstract:
The invention provides a low density paperboard material and associated method for use in producing an insulated container, and is especially well-suited for making cups. The paperboard material comprises a paperboard web including wood fibers and expanded microspheres, and has a relatively low density ranging from about 6 to about 10 lb/3 MSF/mil (0.38 to about 0.64 g/cm3), a relatively high caliper ranging from about 24 to about 35 mil (609 to about 889 μm), and an internal bond strength of at least about 80×10−3 ft-lbf (168×10−3 kj/m2), preferably at least 100×10−3 lft-lbf (210×10−3 kj/m2). For applications such as cups the material is also coated on one or both sides with a barrier coating, preferably low density polyethylene, to limit liquid penetration into the web. The low density paperboard material of the invention is convertible for manufacture of containers, particularly cups, and exhibits insulative properties comparable to higher cost materials conventionally used to make cups. Also, the surface of the low density board may have a Sheffield smoothness of 300 SU or greater compared with the surface smoothness of 160 to 200 SU for conventional cupstock, the latter having been thought necessary for adequate print quality. However, it has been found that the low density board exhibits good printability on flexo printing machines despite its relatively rough surface, which is surprising and bonus effect realized along with the insulative and other properties of the board.
Abstract:
The present invention relates to a process for making self-patterning substrates comprising the steps of providing electrically conductive traces on a substrate; pre-coating the substrate with at least a layer of complementary reactant electrically resistant reactant formulations; altering the conductivity of complementary reactant formulation selectively upon application of external source of energy and a self-patterning substrate using the said process.
Abstract:
A system and method enabling a designer to build electronic forms from hierarchical data is described. Displays of hierarchical data, facilitation of selection of a portion of the hierarchical data, and displays of one or more transformation-language components associated with a selected portion of hierarchical data are described. From the transformation-language components selected by a designer, generation of an electronic form is also described.
Abstract:
Enhanced access data available in a cache. In one embodiment, a cache maintaining copies of source data is formed as a volatile memory. On receiving a request directed to the cache for a copy of a data element, the requested copy maintained in the cache is sent as a response to the request. In another embodiment used in the context of applications accessing databases in a navigational model, a cache maintains rows of data accessed by different user applications on corresponding connections. Applications may send requests directed to the cache to retrieve copies of the rows, populated potentially by other applications, while the cache restricts access to rows populated by other applications when processing requests directed to the source database system. In another embodiment, an application may direct requests to retrieve data elements caused to be populated by activity on different connections established by the same application.
Abstract:
A system and method for effectively encoding and decoding electronic information includes an encoding system with a tiling module that initially divides source image data into data tiles. A frame differencing module then outputs only altered data tiles to various processing modules that convert the altered data tiles into corresponding tile components. A quantizer performs a compression procedure upon the tile components to generate compressed data according to an adjustable quantization parameter. An adaptive entropy selector then selects one of a plurality of available entropy encoders to most effectively perform an entropy encoding procedure to thereby produce encoded data. The entropy encoder may also utilize a feedback loop to adjust the quantization parameter in light of current transmission bandwidth characteristics.
Abstract:
An object type translator (OTT) determines one or more database object types. The one or more database object types are mapped to a first structural language type definition code. After being generated, the user may add user code to the first structural language type definition code. During regeneration of these files, the first structural language type definition code is then parsed to determine the user code that has been added, based on the start and end markers that the user code segments have been marked with. OTT maps these user-code segments to the corresponding database types and keeps track of the mapping and the user code. When the OTT starts generating the second structural language code, the OTT determines a position where the user code should be inserted into the second structural language type definition code using that mapping. The user code is then inserted in the second structural language code in the position determined. Accordingly, the user code that was added is not lost when the structural language type definition code is regenerated from the one or more database object types.
Abstract:
This invention relates to composition containing expandable microspheres and at least one ionic compound and having a zeta potential that is greater than or equal to zero mV at a pH of about 9.0 or less at an ionic strength of from 10−6 M to 0.1 M., as well as methods of making and using the composition.
Abstract:
An object type translator (OTT) determines one or more database object types. The one or more database object types are mapped to a first structural language type definition code. After being generated, the user may add user code to the first structural language type definition code. During regeneration of these files, the first structural language type definition code is then parsed to determine the user code that has been added, based on the start and end markers that the user code segments have been marked with. OTT maps these user-code segments to the corresponding database types and keeps track of the mapping and the user code. When the OTT starts generating the second structural language code, the OTT determines a position where the user code should be inserted into the second structural language type definition code using that mapping. The user code is then inserted in the second structural language code in the position determined. Accordingly, the user code that was added is not lost when the structural language type definition code is regenerated from the one or more database object types.
Abstract:
A calendering method which enhances the smoothness of surface sized paper/paperboard by a combination of temperature and moisture gradient calendering processes without the fiber sticking/picking problems that affect runnability and without using waterboxes. The moisture gradient calendering is performed so that the cross direction moisture profile can be corrected and high smoothness levels can be obtained. Heated calender rolls form a hot pressure nip having a temperature greater than the temperature of the moisturized web. Lubricant is applied to both sides of the web to prevent fiber sticking/picking in the hot nip. The lubricant may be applied by the size press, by the moisturizing showers or by separate lubricant showers. The smoothness developed by moisturizing and hot nip calendering is substantially irreversible.
Abstract:
A multilayer linerboard product having a top layer made up of bleached/unbleached virgin or recycled pulp and at least one bottom layer made up of unbleached pulp. The external surface of the top layer has reduced gloss mottle and improved printing properties. In particular, the top surface of the multilayer linerboard has a Parker smoothness less than 6.5 and a Hagerty/Sheffield smoothness in the range of 240 to 280. Print voids on a flexo printed product are less than 0.20% (by area) as measured by image analysis. These improvements are achieved in an extended nip calender section having a heated calender roll, a backing roll or shoe and a conformable belt. Preferably, the nip width is 1 to 25 cm. The temperature of the surface of the heated calender roll is preferably maintained in the range of 300 to 500° F. The nipload between the heated calender roll and the conformable belt is preferably maintained in the range of 500 to 2,500 pli.