Abstract:
A method and system of transform-based encoding, decoding, and bitstream generation of digital video content. The digital video content comprises a stream of pictures, slices, or macroblocks which can each be intra, predicted or bi-predicted pictures. The pictures, slices, or macroblocks comprise blocks of pixels. The method comprises scanning frequency coefficients from each of the block's two dimensional array of frequency coefficients in a manner that is vertically biased.
Abstract:
A method and system of encoding and decoding digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the smaller blocks in each picture in said stream of pictures in either frame mode or in field mode.
Abstract:
A frame structure for a plastic window frame structure includes four plastic casings, four steel bushings, and four angled insertion members. The plastic casings are integrally connected with each other by welding to form a rectangular frame. Each of the steel bushings is axially mounted in a respective one of the plastic casings. Each of the insertion members is mounted in the plastic casings and mounted on any two adjacent steel bushings to connect the steel bushings. Thus, the steel bushings are connected by the insertion members, so that the steel bushings are combined integrally, thereby greatly enhancing the structural strength of the frame structure.
Abstract:
A method and system of encoding and decoding digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the smaller blocks in each picture in said stream of pictures in either frame mode or in field mode.
Abstract:
A method and system of encoding and decoding digital video content. The digital video content comprises a stream of pictures which can each be intra, predicted, or bi-predicted pictures. Each of the pictures comprises macroblocks that can be further divided into smaller blocks. The method entails encoding and decoding each of the smaller blocks in each picture in said stream of pictures in either frame mode or in field mode.
Abstract:
A method of scanning frequency coefficients from an original two dimensional array into a one dimensional array of the frequency coefficients. The frequency coefficients correspond to pixels in a block that are to be encoded. The method includes dividing the original two dimensional array of the frequency coefficients into a number of four by four blocks of frequency coefficients and successively scanning the frequency coefficients in each of the number of four by four blocks with a pre-determined scanning order starting at 0 and ending at 15.
Abstract:
A system for rate control during transcoding and encoding of digital video data in a multi-program transmission environment accommodates changes in the GOP structure of any of the programs, e.g., due to a commercial insertion or the like. A hierarchical bit allocation scheme is used, where bits are allocated on a super group of pictures (GOP) level, i.e., a grouping of multiple GOPs, a super frame level, and an individual frame level. The bit allocation for the super GOP and each picture is adjusted when a change in the structure of a group of pictures (GOP) is detected for any of the pre-compressed programs. The super GOP length may also be adjusted if required to maintain an integer number of GOPs therein. A change in the GOP structure is detected based on a change in the GOP length or sub_GOP length (distance between P pictures). For pre-compressed data, initial GOP lengths and sub_GOP lengths can be assumed and adjusted as required based on actual measurements. For a current I or P picture, the sub GOP length is calculated based on temporal references of the current picture and a previous I or P picture. For a current B picture, the same calculation is used, plus one picture.
Abstract:
A method is provided for replacing compressed video from a first source with video from a second source at a predefined insertion point in a video data stream. If the video from the second source is progressively refreshed video, it is decompressed sufficiently prior to the insertion point to enable the recovery and recompression of a first video frame (in encoding order) from the second source to be inserted at the insertion point. The recovered first video frame is then recompressed as an intra-coded (I) frame. The insertion of the video from the second source is then commenced at the insertion point using the I frame. The insertion point can, for example, indicate the commencement of a commercial break in the video stream, in which case the second source provides a commercial for insertion into the commercial break. Where the commercial is stored in memory, it can be stored with the first frame thereof (in encoding order) as an I frame.
Abstract:
A transparent display panel and device are disclosed. The transparent display panel includes a first substrate, a second substrate and a liquid crystal layer disposed there between. Each pixel structure includes a display region and a transparent region which are disposed adjacently. The display region includes a first switching transistor and a first electrode. The transparent region includes a second electrode, and the second electrode is coupled and connected with the first electrode. Accordingly, when the transparent display panel displays a high grayscale level, an affection of the display effect by the transmission light of the transparent region is reduced, and when displays a low grayscale level, the feature of transparent display can be achieved.
Abstract:
The present disclosure generally discloses packet processing offload support capabilities for supporting packet processing offload. The packet processing offload support capabilities may be configured to support general and flexible packet processing offload at an end host by leveraging a processing device (e.g., a smart network interface card (sNIC) or other suitable processing device) added to the end host to support offloading of various packet processing functions from the hypervisor of the end host to the processing device added to the end host. The packet processing offload support capabilities may be configured to support packet processing offload by including, within the end host, a virtualization switch and a packet processing offload agent which may be configured to cooperate to transparently offload at least a portion of the packet processing functions of the end host from the hypervisor of the end host to an sNIC of the end host while keeping the existing management plane and control plane interfaces of the datacenter unmodified.