摘要:
A method of forming an integrated circuit structure includes providing a semiconductor substrate including a top surface; forming an opening extending from the top surface into the semiconductor substrate; and performing a first deposition step to fill a first dielectric material into the opening. The first dielectric material is then recessed. A second deposition step is performed to fill a remaining portion of the opening with a second dielectric material. The second dielectric material is denser than the first dielectric material. The second dielectric material is recessed until a top surface of the second dielectric material is lower than the top surface of the semiconductor substrate.
摘要:
An embodiment of the disclosure includes a method of forming a shallow trench isolation structure. A substrate is provided. The substrate includes a top surface. A trench is formed extending from the top surface into the substrate. The trench has sidewalls and a bottom surface. A liner oxide layer is formed on the sidewalls and the bottom surface. The liner oxide layer is treated in a plasma environment comprises at least one of NF3, F2, and BF2. The trench is filled with a dielectric layer.
摘要:
A method of forming a metal-oxide-semiconductor (MOS) transistor device is disclosed. A semiconductor substrate is prepared first, and the semiconductor substrate has agate structure, a source region and a drain region. Subsequently, a stress buffer layer is formed on the semiconductor substrate, and covers the gate structure, the source region and the drain region. Thereafter, a stressed cap layer is formed on the stress buffer layer, and a tensile stress value of the stressed cap layer is higher than a tensile stress value of the stress buffer layer. Since the stress buffer layer can prevent the stressed cap layer from breaking, the MOS transistor device can be covered by a stressed cap layer having an extremely high tensile stress value in the present invention.
摘要:
A method of forming a metal-oxide-semiconductor (MOS) transistor device is disclosed. A semiconductor substrate is prepared first, and the semiconductor substrate has a gate structure, a source region and a drain region. Subsequently, a stress buffer layer is formed on the semiconductor substrate, and covers the gate structure, the source region and the drain region. Thereafter, a stressed cap layer is formed on the stress buffer layer, and a tensile stress value of the stressed cap layer is higher than a tensile stress value of the stress buffer layer. Since the stress buffer layer can prevent the stressed cap layer from breaking, the MOS transistor device can be covered by a stressed cap layer having an extremely high tensile stress value in the present invention.
摘要:
A semiconductor device having fins and a method of manufacture are provided. A patterned mask is formed over a substrate. Trenches are formed in the substrate and the trenches are filled with a dielectric material. Thereafter, the patterned mask is removed and one or more etch processes are performed to recess the dielectric material, wherein at least one of the etch processes is an etch process that removes or prevents fences from being formed along sidewalls of the trench. The etch process may be, for example, a plasma etch process using NH3 and NF3, an etch process using a polymer-rich gas, or an H2 etch process.
摘要:
A method of forming an integrated circuit structure includes providing a substrate; forming a first hard mask layer over the substrate; forming a second hard mask layer over the first hard mask layer; patterning the second hard mask layer to form a hard mask; and, after the step of patterning the second hard mask layer, baking the substrate, the first hard mask layer, and the hard mask. After the step of baking, a spacer layer is formed, which includes a first portion on a top of the hard mask, and a second portion and a third portion on opposite sidewalls of the hard mask. The method further includes removing the first portion of the spacer layer; removing the hard mask; and using the second portion and the third portion of the spacer layer as masks to pattern the first hard mask layer.
摘要:
A method for fabricating an ultra-high tensile-stressed nitride film is disclosed. A PECVD process is first performed to deposit a transitional silicon nitride film over a substrate. The transitional silicon nitride film has a first concentration of hydrogen atoms. The transitional silicon nitride film is subjected to UV curing process for reducing the first concentration of hydrogen atoms to a second concentration of hydrogen atoms.
摘要:
A metal-oxide-semiconductor (MOS) transistor device is disclosed. The MOS transistor device comprises a semiconductor substrate; a gate structure on the semiconductor substrate; source/drain regions on the semiconductor substrate adjacent to the gate structure; an ultra-high tensile-stressed nitride film having a hydrogen concentration of less than 1E22 atoms/cm3 covering the gate structure and the source/drain regions; and an inter-layer dielectric (ILD) film over the ultra-high tensile-stressed nitride film.
摘要:
A method of forming a shallow trench isolation region includes providing a semiconductor substrate comprising a top surface; forming an opening extending from the top surface into the semiconductor substrate; filling a precursor into the opening using spin-on; performing a steam cure to the precursor to generate a dielectric material; after the steam cure, performing a chemical mechanical polish (CMP) to the dielectric material; and after the CMP, performing a steam anneal to the dielectric material.
摘要:
A method for rounding the corners of a shallow trench isolation is provided. A preferred embodiment comprises filling the trench with a dielectric and recessing the dielectric to expose a portion of the sidewalls of the trench adjacent to the surface of the substrate. The substrate is then annealed in a hydrogen ambient, which rounds the corners of the shallow trench isolation through silicon migration.