Abstract:
A flow frame for a redox flow battery includes: a frame body having a plate-like shape and an electrode hole in its center where an electrode is to be disposed; four through holes disposed at corners of the frame body, respectively; a flow channel disposed at a front of the frame body above and below the electrode hole so that two of the through channels diagonal to each other as a pair are connected to each other via the electrode hole; through channels disposed at distal ends of the flow channel to cause electrolyte flows toward a rear of the frame body; and a distribution channel connecting the through channels with the electrode hole at the rear of the frame body. The flow channel has at least one branch point, and a change in cross sectional area of the flow channel before and after the branch point is 10% or less.
Abstract:
According to one embodiment of the present invention, the method for controlling the pump speed of a redox flow battery for transferring an electrolyte stored in an electrolyte tank to a cell stack comprises the steps of: measuring the input power and/or the output power of the redox flow battery; measuring the charging power and/or the discharging power of the redox flow battery; calculating the power loss of the redox flow battery by using the difference between the input power and the charging power, or the difference between the output power and the discharging power; and adjusting the pump speed according to the power loss.
Abstract:
The present disclosure provides a retroreflective glass bead that includes at least one high refractive oxide selected from the group consisting of TiO2, BaO, La2O and Bi2O3; and at least one additive selected from the group consisting of MgO, CaO, ZnO, ZrO2, Al2O3, K2O, Na2O, Li2O and SrO. The glass bead according to the present invention have excellent retroreflectivity according to optical properties and excellent durability and productivity due to a simple structure, and also can be produced in various colors due to high chemical stability. Thus, the retroreflective aggregate including the glass bead according to the present invention exhibits very high visibility under various circumstances such as rainy or dry conditions. In addition, the method of producing a glass bead according to the present invention can reduce manufacturing costs while ensuring excellent productivity.
Abstract:
Disclosed is a carbon structure electrode for redox flow batteries, which includes a plurality of spherical macropores formed on a surface of a polymer-derived carbon structure and inside the polymer-derived carbon structure so as to allow electrolyte migration. The carbon structure electrode for redox flow batteries has excellent electrical conductivity and enables cost reduction through a simplified preparation process.
Abstract:
Provided herein is a system for manufacturing a core of a vacuum insulation panel, the system comprising: a plurality of molding cast parts disposed along one direction, and providing a molding space for core material to be supplied and press-molded; a plurality of raw material suppliers distanced from one another, and supplying core material to the molding space; a press-molder disposed between the raw material suppliers, and receiving the molding cast part where the core material is supplied through the raw material supplier, and pressing the molding space; and a carrier transferring the molding cast part after the core material is supplied by the raw material supplier and the molding space is press-molded by the press-molder.
Abstract:
Disclosed herein are an anode active material and a secondary battery comprising the same, and more specifically, an anode active material comprising a graphite carbon material coated with an amorphous carbon material comprising metal particles, and a secondary battery comprising the same.
Abstract:
Disclosed is a method for enrichment of NF3 gas, comprising: (a) feeding a gas mixture containing a low concentration of NF3 gas and impurities; and (b) passing the feed gas mixture through a non-porous membrane module, wherein an enriched NF3 gas mixture passing through the non-porous membrane module and an unenriched NF3 gas mixture failing to pass through the non-porous membrane module are separated depending on the differences in the kinetic diameters of the individual gases.
Abstract:
Disclosed herein are a manufacturing method of a carbon-silicon composite, comprising: (a) preparing a silicon-polymer matrix slurry comprising a silicon slurry, a monomer, and a cross-linking agent; (b) performing a heat treatment on the silicon-polymer matrix slurry to manufacture a silicon-polymer carbonized matrix; (c) pulverizing the silicon-polymer carbonized matrix to manufacture silicon-polymer carbonized particles; and (d) mixing the silicon-polymer carbonized particles with a first carbon raw material, and then performing a carbonization process, the carbon-silicon composite, an anode for a secondary battery manufactured by applying the carbon-silicon composite, and a secondary battery comprising the anode for a secondary battery.
Abstract:
The present invention relates to an apparatus for producing a pitch-based chopped carbon fiber and a producing method for the chopped fiber and, more specifically, to an apparatus and a method for drawing an ejected pitch using melt spinning and producing carbon fibers as chopped fibers in a continuous manner.
Abstract:
The present disclosure provides a retroreflective glass bead that includes at least one high refractive oxide selected from the group consisting of TiO2, BaO, La2O and Bi2O3; and at least one additive selected from the group consisting of MgO, CaO, ZnO, ZrO2, Al2O3, K2O, Na2O, Li2O and SrO. The glass bead according to the present invention have excellent retroreflectivity according to optical properties and excellent durability and productivity due to a simple structure, and also can be produced in various colors due to high chemical stability. Thus, the retroreflective aggregate including the glass bead according to the present invention exhibits very high visibility under various circumstances such as rainy or dry conditions. In addition, the method of producing a glass bead according to the present invention can reduce manufacturing costs while ensuring excellent productivity.