Abstract:
The disclosed embodiments provide a battery cell which includes a set of jelly rolls enclosed in a pouch. Each jelly roll includes layers which are wound together, including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a first set of conductive tabs and a second set of conductive tabs. Each of the first set of conductive tabs is coupled to the cathode of one of the jelly rolls, and each of the second set of conductive tabs is coupled to the anode of one of the jelly rolls. At least one of the first set and one of the second set of conductive tabs extend through seals in the pouch to provide terminals for the battery cell.
Abstract:
The disclosed embodiments provide a system that manages use of a battery corresponding to a high-voltage lithium-polymer battery in a portable electronic device. During operation, the system monitors a cycle number of the battery during use of the battery with the portable electronic device, wherein the cycle number corresponds to a number of charge-discharge cycles of the battery. If the cycle number exceeds one or more cycle number thresholds, the system modifies a charging technique for the battery to manage swelling in the battery and use of the battery with the portable electronic device.
Abstract:
A method for improving the lithium cobalt oxide (LiCoO2) film (such as films in thin film batteries) morphology includes using oxygen (O2) and argon (Ar) gases during sputtering deposition of the LiCoO2 film. This may allow for the manufacturing of thicker LiCoO2 films. Such a method may also significantly reduce or eliminate cracking and obvious columnar structures within the resulting LiCoO2 film layer. Sputtering using a mixture of O2 and Ar also may produce a LiCoO2 film layer that requires lower annealing temperatures to reach good utilization and has higher lithium diffusion rates.
Abstract:
Cell stacks are presented that include binders for wet and dry lamination processes. The cell stacks, when laminated, produce battery cells (or portions thereof). The cell stacks include a cathode having a cathode active material disposed on a cathode current collector. The cell stacks also include an anode having an anode active material disposed on an anode current collector. The anode is oriented towards the cathode such that the anode active material faces the cathode active material. A separator is disposed between the cathode active material and the anode active material and comprising a binder comprising a PVdF-HFP copolymer. In certain instances, an electrolyte fluid is in contact with the separator. Methods of laminating the cell stacks are also presented.
Abstract:
The disclosed embodiments provide a battery pack for use with a portable electronic device. The battery pack includes a first set of cells with different capacities electrically coupled in a parallel configuration. Cells within the first set of cells may also have different thicknesses and/or dimensions. The first set of cells is arranged within the battery pack to facilitate efficient use of space within a portable electronic device. For example, the first set of cells may be arranged to accommodate components in the portable electronic device.
Abstract:
A battery assembly can be formed on a base layer provided on a temporary process substrate, with a thin film battery stack including an anode layer, a cathode layer, and an electrolyte layer between the anode and cathode layers. The thin film battery stack can be bonded to a transfer layer, and the process substrate can be removed for assembly into a battery system.
Abstract:
The disclosed embodiments provide a system that manages use of a battery corresponding to a high-voltage lithium-polymer battery in a portable electronic device. During operation, the system monitors a cycle number of the battery during use of the battery with the portable electronic device, wherein the cycle number corresponds to a number of charge-discharge cycles of the battery. If the cycle number exceeds one or more cycle number thresholds, the system modifies a charging technique for the battery to manage swelling in the battery and use of the battery with the portable electronic device.
Abstract:
The disclosed embodiments provide a battery cell. The battery cell includes a set of layers including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a pouch enclosing the layers, which contains a first layer of polyether ether ketone (PEEK).
Abstract:
The disclosed embodiments relate to the design of a stacked-cell battery comprising a stack of layers, including alternating anode and cathode layers coated with active material with intervening separator layers. The stack includes a plurality of notches formed along one or more sides of the stack, including a first notch and a second notch, wherein each cathode layer includes an uncoated cathode tab extending into the first notch, and wherein each anode layer includes an uncoated anode tab extending into the second notch. Moreover, a common cathode tab is bonded to the cathode tabs within the first notch, and a common anode tab is bonded to the anode tabs within the second notch. The stacked-cell battery also includes a pouch enclosing the stack, wherein the common anode and cathode tabs extend through the pouch to provide cathode and anode terminals for the battery cell.
Abstract:
The disclosed embodiments relate to the design of a battery cell with multiple thicknesses. This battery cell includes a jelly roll enclosed in a pouch, wherein the jelly roll includes layers which are wound together, including a cathode with an active coating, a separator, and an anode with an active coating. The jelly roll also includes a first conductive tab coupled to the cathode and a second conductive tab coupled to the anode. The jelly roll is enclosed in a flexible pouch, and the first and second conductive tabs are extended through seals in the pouch to provide terminals for the battery cell. Furthermore, the battery cell has two or more thicknesses, wherein the different thicknesses are created by removing material from one or more of the layers before winding the layers together.