Abstract:
Polycrystalline compacts include smaller and larger hard grains that are interbonded to form a polycrystalline hard material. The larger grains may be at least about 150 times larger than the smaller grains. An interstitial material comprising one or more of a boride, a carbide, a nitride, a metal carbonate, a metal bicarbonate, and a non-catalytic metal may be disposed between the grains. The compacts may be used as cutting elements for earth-boring tools such as drill bits, and may be disposed on a substrate.
Abstract:
Polycrystalline compacts include a polycrystalline material comprising a plurality of inter-bonded grains of hard material, and a metallic material disposed in interstitial spaces between the inter-bonded grains of hard material. At least a portion of the metallic material comprises a metal alloy that includes two or more elements. A first element of the two or more elements comprises at least one of cobalt, iron, and nickel. A second element of the two or more elements comprises at least one of dysprosium, yttrium, terbium, gadolinium, germanium, samarium, neodymium, and praseodymium. The metal alloys may comprise eutectic or near-eutectic compositions, and may have relatively low melting points. Cutting elements and earth-boring tools include such polycrystalline compacts. Methods include the formation of such polycrystalline compacts, cutting elements, and earth-boring tools.
Abstract:
An abrasive article including a material including an abrasive material and a filler material having an average negative coefficient of thermal expansion (CTE) within a range of temperatures between about 70 K to about 1500 K.
Abstract:
Polycrystalline compacts include non-catalytic nanoparticles in interstitial spaces between interbonded grains of hard material in a polycrystalline hard material. Cutting elements and earth-boring tools include such polycrystalline compacts. Methods of forming polycrystalline compacts include sintering hard particles and non-catalytic nanoparticles to form a polycrystalline material. Methods of forming cutting elements include infiltrating interstitial spaces between interbonded grains of hard material in a polycrystalline material with a plurality of non-catalytic nanoparticles.
Abstract:
Methods of fabricating polycrystalline diamond include functionalizing surfaces of carbon-free nanoparticles with one or more functional groups, combining the functionalized nanoparticles with diamond nanoparticles and diamond grit to form a particle mixture, and subjecting the particle mixture to high pressure and high temperature (HPHT) conditions to form inter-granular bonds between the diamond nanoparticles and the diamond grit. Cutting elements for use in an earth-boring tool includes a polycrystalline diamond material formed by such processes. Earth-boring tools include such cutting elements.
Abstract:
A method of forming a cutting element for an earth-boring tool. The method includes providing diamond particles on a supporting substrate, the volume of diamond particles comprising a plurality of diamond nanoparticles. A catalyst-containing layer is provided on exposed surfaces of the volume of diamond nanoparticles and the supporting substrate. The diamond particles are processed under high temperature and high pressure conditions to form a sintered nanoparticle-enhanced polycrystalline compact. A cutting element and an earth-boring tool including a cutting element are also disclosed.
Abstract:
Methods for forming cutting elements, methods for forming polycrystalline compacts, and related polycrystalline compacts are disclosed. Grains of a hard material are subjected to a high pressure, high temperature process to form a polycrystalline compact. Inclusion of at least one relatively quick spike in system pressure or temperature during an otherwise plateaued temperature or pressure stage accommodates formation of inter-granular bonds between the grains. The brevity of the peak stage may avoid undesirable grain growth. Embodiments of the methods may also include at least one of oscillating at least one system condition (e.g., pressure, temperature) and subjecting the grains to ultrasonic or mechanical vibrations. A resulting polycrystalline compact may include a high density of inter-granularly bonded hard material with a minimized amount of catalyst material, and may provide improved thermal stability, wear resistance, toughness, and behavior during use of a cutting element incorporating the polycrystalline compact.
Abstract:
Methods of forming a polycrystalline compact using at least one metal salt as a sintering aid. Such methods may include forming a mixture of the at least one metal salt and a plurality of grains of hard material and sintering the mixture to form a hard polycrystalline material. During sintering, the metal salt may melt or react with another compound to form a liquid that acts as a lubricant to promote rearrangement and packing of the grains of hard material. The metal salt may, thus, enable formation of hard polycrystalline material having increased density, abrasion resistance, or strength. The metal salt may also act as a getter to remove impurities (e.g., catalyst material) during sintering. The methods may also be employed to faun cutting elements and earth-boring tools.
Abstract:
A polycrystalline compact comprises a plurality of grains of hard material and a plurality of nanoparticles disposed in interstitial spaces between the plurality of grains of hard material. The plurality of nanoparticles has a thermal conductivity less than a thermal conductivity of the plurality of grains of hard material. An earth-boring tool comprises such a polycrystalline compact. A method of forming a polycrystalline compact comprises combining a plurality of hard particles and a plurality of nanoparticles to form a mixture and sintering the mixture to form a polycrystalline hard material comprising a plurality of interbonded grains of hard material. A method of forming a cutting element comprises infiltrating interstitial spaces between interbonded grains of hard material in a polycrystalline material with a plurality of nanoparticles. The plurality of nanoparticles have a lower thermal conductivity than the interbonded grains of hard material.
Abstract:
A composite material comprising a plurality of hard particles surrounded by a matrix material comprising a plurality of nanoparticles. Earth boring tools including the composite material and methods of forming the composite material are also disclosed. A polycrystalline material having a catalyst material including nanoparticles in interstitial spaces between inter-bonded crystals of the polycrystalline material and methods of forming the polycrystalline material are also disclosed.