Abstract:
Disclosed are a channel status information (CSI) feedback and control method and device. The method comprises: a terminal receives trigger signaling sent by a base station, the trigger signaling being used for instructing the terminal to report CSI obtained within a specified measurement window; and the terminal reports the CSI that is measured by the terminal within the specified measurement window to the base station. Because a terminal reports only CSI that is measured by the terminal within a specified measurement window, the frequency of feeding back CSI by the terminal is reduced, and CSI feedback overheads are also reduced.
Abstract:
A method, system, and device for transmitting a preamble signal and for signal measurement, for use in solving the problem found in the prior art that the transmission power of each antenna unit is greatly reduced as a result that each antenna unit transmits one preamble signal and that the complexity of a user equipment is increased when the antenna units are of a great number. The method of embodiments of the present disclosure comprises: a network side device transmits to the user equipment determined CSI feedback configurations, where one CSI feedback configuration corresponds to one CSI-RS resource, and the preamble signal corresponding to each port of the one CSI-RS resource is transmitted via one set of antenna unit corresponding to the port. Employment of the solution of the embodiments of the present disclosure increases the transmission power of the antenna units, allows the user equipment to correctly perform signal measurement, increases the performance of data transmission, and reduces the complexity of the user equipment when the antenna units are of a great number.
Abstract:
The embodiments of the present disclosure provide a method and a device for constraining a codebook subset. The method includes steps of: determining codebook subset constraint parameters for all or parts of matrix sets for constructing a codebook respectively, each codebook subset constraint parameter indicating an available matrix in a corresponding matrix set; and transmitting the determined codebook subset constraint parameters to a UE. The number of the matrices in each matrix set for constructing the codebook is far less than the number of precoding matrices in the codebook.
Abstract:
A method, system, and device for transmitting coding instruction information, for use in solving the problem as current codebooks are designed for horizontal beamforming/pre-coding, direct application of the codebooks to a three-dimensional beamforming/pre-coding technology causes performance degradation. The method of embodiments of the present invention comprises: a user equipment determines and transmits to a network side first pre-coding instruction information and second pre-coding instruction information, where a first component pre-coding matrix is a block diagonal matrix, a submatrix on the diagonal is equal to the Kronecker product of two matrices, a second component pre-coding matrix is constituted by a weighted column selection vector, with the exception of a P-number of nonzero elements, the remainder of the weighted column selection vector is all zeros, and P is a positive integer. Employment of the method of the embodiments of the present invention increases the performance of the three-dimensional beamforming/pre-coding technology.
Abstract:
A signal detection method and a signal detection device are provided. The signal detection method includes steps of: performing channel estimation based on a signal received by each of antennae, to acquire a channel estimation matrix for transmitters multiplexing on identical time-frequency resources on each of the antennae; determining an equivalent Pattern Division Multiple Access (PDMA) channel estimation matrix for each of the antennae based on a PDMA encoding matrix, and acquiring an equivalent multi-antenna PDMA channel estimation matrix for all the antennae based on the equivalent PDMA channel estimation matrix for each of the antennae; performing a joint detection based on the equivalent multi-antenna PDMA channel estimation matrix, an equivalent multi-antenna received signal vector and a set of constellation points of the transmitters multiplexing on the identical time-frequency resources, to acquire Log Likelihood Ratios (LLRs) for the transmitters; and decoding the LLRs for the transmitters, to acquire multi-user information at transmitting end.
Abstract:
Disclosed are a channel state information feedback and acquisition method and device. The application comprises: acquiring, by a terminal, a first-dimension downlink reference signal resource, S second-dimension downlink reference signal resources and a first corresponding relationship of the above configured by a network device; measuring, by the terminal and according to the first-dimension downlink reference signal resource, a first-dimension downlink reference signal, and selecting, by the terminal and according to the measured first-dimension PMI and the first corresponding relationship, a resource for measuring a second-dimension downlink reference signal, measuring, according to the resource, the second-dimension downlink reference signal, and feeding back channel state information, wherein the second-dimension reference signal is transmitted after forming a first-dimension beamforming weight. The present application enables acquisition of channel state information between a network device and a terminal, and adjustment of the first-dimension beamforming weight for forming the second-dimension reference signal according to the PMI fed back by the first-dimension.
Abstract:
The present disclosure provides a CSI feedback method, a CSI feedback device and a CSI feedback system. The CSI feedback method includes steps of: configuring, by a network side device, a first downlink channel measurement pilot for a UE; and receiving, by the network side device, first PMI information fed back by the UE. The first PMI information is acquired by the UE based on measurement of the first downlink channel measurement pilot and second PMI information. A dimension represented by the first PMI information is different from a dimension represented by the second PMI information.
Abstract:
Disclosed are a D2D data transmission method and device. The method comprises: determining, by a D2D data sending end, a state of each sending opportunity in a sending window in the same manner as a D2D data receiving end, wherein the sending window is uniformly divided into a plurality of sending opportunities, and the state of each sending opportunity comprises a data sending state and a silent state; and sending D2D data to the D2D data receiving end in the sending opportunity of each data sending state in the sending window. By means of the technical solution provided in the embodiments of the present application, a D2D data sending end sends data on different resources (sending opportunities) or becomes silent, so that different D2D data sending ends are staggered on the resources, thereby alleviating the influence of “near-far” effects.
Abstract:
The present disclosure provides a scheduling method, a coordinated-transmission node and a CCN for downlink coordinated-transmission. The scheduling method at a coordinated-transmission node side includes: receiving, by a coordinated-transmission node, scheduling privilege information corresponding to a downlink time-frequency resource from a CCN, the scheduling privilege information corresponding to the downlink time-frequency resource indicating a scheduling privilege of the coordinated-transmission node over the downlink time-frequency resource; and performing, by the coordinated-transmission node, the scheduling in accordance with the received scheduling privilege information and the latest CSI reported by the terminal. According to the embodiments of the present disclosure, the CCN merely determines the scheduling privilege of each coordinated-transmission node over the downlink time-frequency resource, and each coordinated-transmission node performs the scheduling in accordance with its scheduling privilege and the latest CSI reported by the terminal that is connected to the coordinated-transmission node.