Abstract:
Provided in accordance with the present disclosure are systems for identifying a position of target tissue relative to surgical tools using a structured light detector. An exemplary system includes antennas configured to interact with a marker placed proximate target tissue inside a patient's body, a structured light pattern source, a structured light detector, a display device, and a computing device configured to receive data from the antennas indicating interacting with the marker, determine a distance between the antennas and the marker, cause the structured light pattern source to project and detect a pattern onto the antennas. The instructions may further cause the computing device to determine, a pose of the antennas, determine, based on the determined distance between the antennas and the marker, and the determined pose of the antennas, a position of the marker relative to the antennas, and display the position of the marker relative to the antennas.
Abstract:
A morcellator includes a housing, an elongated tube extending distally from the housing, and first and second electrodes. A distal end of the elongated tube is configured to cut tissue. The first electrode extends from the housing to the distal end of the elongated tube and is disposed around at least a portion of the distal end of the elongated tube. The second electrode extends distally beyond the first electrode. Another morcellator includes a housing, an elongated tube extending distally from the housing, and an oscillating mechanism. A distal end of the elongated tube includes opposing blade sections and at least one blunt section. The opposing blade sections are configured to cut tissue. The oscillating mechanism is configured to drive oscillation of the elongated tube to cut tissue with the blade sections.
Abstract:
An electrosurgical instrument includes a housing, an elongated shaft, and an end-effector assembly. The proximal end of the shaft is operably associated with the housing. The end-effector assembly is operably coupled to the distal end of the shaft and includes first and second jaw members. Each of the first and second jaw members includes a sealing plate and a bipolar electrode. Either one or both of the first and second jaw members is movable from a position in spaced relation relative to the other jaw member to at least one subsequent position wherein the sealing plates cooperate to grasp tissue therebetween. The electrosurgical instrument includes a semiconductor switch operably coupled to at least one of the sealing plates and at least one of the bipolar electrodes. The semiconductor switch is configured to enable user selection between energizing the at least one sealing plate or the at least one bipolar electrode.
Abstract:
An electrosurgical suction coagulator is disclosed having improved thermal insulation between the active electrode and adjacent tissue. In embodiments, passive insulation is used to control the transfer of thermal energy from an electrosurgical electrode into surrounding tissue. Braided, closed-sell foam material, and open cell foam materials may be used to thermally insulate the outer surface of a suction coagulator shaft from an inner electrode. In embodiments, a suction coagulator shaft includes an external covering formed from open-cell foam material, which may be saturated with a coolant, such as water or saline, to increase the thermal mass of the shaft. In other embodiments, active cooling delivers coolant to the operative site. In yet other embodiments, a suction coagulator shaft includes a cooling jacket through which coolant is passed to actively cool the instrument. The improved electrosurgical suction coagulator disclosed herein may have a reduced operating surface temperatures which may result in reduced risk of undesirable effects to adjacent tissue, and may result in reduced operative times and improved patient outcomes.
Abstract:
A system and method for imaging tissue including an endoscope capable of illuminating tissue with white and near infrared light. The method includes detecting the fluorescence and displaying the detected fluorescence in combination with white light images.
Abstract:
A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.
Abstract:
A surgical stitching device includes a suture needle configured to reliably pass through a typically thick scarred tissue present along, e.g., an edge of midline hernias. The surgical stitching device includes first and second jaws. The suture needle is selectively supported on the first or second jaws at, e.g., an acute, angle with respect to a longitudinal axis defined by the corresponding first or second jaw. The suture needle may be selectively secured with the first or second jaw by first and second needle receiving blades configured for reciprocating axial displacement. A suture is connected to the suture needle to perform suturing of tissue.
Abstract:
A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.
Abstract:
A surgical instrument includes a housing (20), a syringe carriage (40), a movable handle (25), a shaft (30), a needle sheath (50), and a needle (60). The syringe carriage is operably coupled to the housing and configured to couple to a syringe. The movable handle is movable relative to the housing and operably coupled to the syringe carriage to distally advance the syringe carriage. The shaft extends distally from the housing and defines a lumen. The needle sheath extends through the lumen of the shaft, defines a lumen, and is movable relative to the shaft between an extended condition and a retracted condition. The needle extends through the lumen of the needle sheath and is configured to operably couple to a syringe coupled to the syringe carriage.
Abstract:
A method for enhanced surgical navigation, and a system performing the method and displaying graphical user interfaces associated with the method. A 3D spatial map of a surgical site is generated using a 3D endoscope including a camera source and an IR scan source. The method includes detecting a needle tip protruding from an anatomy and determining a needle protrusion distance corresponding to a distance between the needle tip and a surface of the anatomy using the 3D spatial map. A position of a surgical tool in the 3D spatial map is detected and a determination is made by the system indicative of whether the needle protrusion distance is sufficient for grasping by the surgical tool. A warning is generated when it is determined that the needle protrusion distance is not sufficient for grasping by the surgical tool.