摘要:
As a preliminary stage in manufacturing a lens or lens part for an objective, in particular a projection objective for a microlithography projection system, an optical blank is made from a crystal material. As a first step in manufacturing the optical blank, one determines the orientation of a first crystallographic direction that is defined in the crystallographic structure of the material. The material is then machined into an optical blank so that the first crystallographic direction is substantially perpendicular to an optical blank surface of the optical blank. Subsequently, a marking is applied to the optical blank or to a mounting element of the optical blank. The marking has a defined relationship to a second crystallographic direction which is oriented at a non-zero angle relative to the first crystallographic direction.
摘要:
As a preliminary stage in manufacturing a lens or lens part for an objective, in particular a projection objective for a microlithography projection system, an optical blank is made from a crystal material. As a first step in manufacturing the optical blank, one determines the orientation of a first crystallographic direction that is defined in the crystallographic structure of the material. The material is then machined into an optical blank so that the first crystallographic direction is substantially perpendicular to an optical blank surface of the optical blank. Subsequently, a marking is applied to the optical blank or to a mounting element of the optical blank. The marking has a defined relationship to a second crystallographic direction which is oriented at a non-zero angle relative to the first crystallographic direction.
摘要:
A method of determining materials of lenses contained in an optical system of a projection exposure apparatus is described. First, for each lens of a plurality of the lenses, a susceptibility factor KLT/LH is determined. This factor is a measure of the susceptibility of the respective lens to deteriorations caused by at least one of lifetime effects and lens heating effects. Then a birefringent fluoride crystal is selected as a material for each lens for which the susceptibility factor KLT/LH is above a predetermined threshold. Theses lenses are assigned to a first set of lenses. For these lenses, measures are determined for reducing adverse effects caused by birefringence inherent to the fluoride crystals.
摘要:
An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
摘要:
The invention relates to a device for holding a beam splitter element having an optically active beam splitter layer in an optical imaging device, the beam splitter element being connected to at least one support element that is fastened in the housing of the imaging device. The connection between the beam splitter element and said at least one support element is designed in such a way that the position of the beam splitter layer of the beam splitter element remains nearly constant relative to the housing independently of temperatures and of thermal stresses acting upon the beam splitter element.
摘要:
An optical system for ultraviolet light having wavelengths λ≦200 nm, which may be designed in particular as a catadioptric projection objective for microlithography, has a plurality of optical elements including optical elements made of synthetic quartz glass or a fluoride crystal material transparent to a wavelength λ≦200 nm. At least two of the optical elements are utilized for forming at least one liquid lens group including a first delimiting optical element, a second delimiting optical element, and a liquid lens, which is arranged in an interspace between the first delimiting optical element and the second delimiting optical element and contains a liquid transparent to ultraviolet light having wavelengths λ≦200 nm. This enables effective correction of chromatic aberrations even in the case of systems that are difficult to correct chromatically.
摘要:
A method for improving imaging properties of two or more optical elements comprises the step of determining for at least one of the two optical elements a polarisation-dependent perturbation. In a further step a polarisation-independent perturbation is determined for at least one of the two optical elements. Then a target position for the at least one movable optical element is calculated such that, in the target position, the total perturbation of the at least two optical elements which is made up of the polarisation-dependent perturbations and polarisation-independent perturbations of the two optical elements, is minimized. Finally the at least one movable optical element is moved the to the calculated target position.
摘要:
A numerical optimizing method serves to reduce harmful effects caused by intrinsic birefringence in lenses of a fluoride crystal material of cubic crystal structure in an objective, particularly a projection objective for a microlithography system. Under the optimizing method, an optimizing function which takes at least one birefringence-related image aberration into account is minimized. The birefringence-related image aberration is determined from a calculation for a light ray passing through the fluoride crystal lenses. To the extent that the birefringence-related image aberration is a function of parameters of the light ray, it depends only on geometric parameters of the light ray. The numerical optimizing method is used to produce objectives in which an optical retardation as well as an asymmetry of the optical retardation are corrected. The lenses are arranged in homogeneous groups, where each homogeneous group is corrected for the optical retardation asymmetry.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
摘要:
A projection exposure apparatus has a projection lens with an object plane, an image plane, an optical axis and a non-telecentric entrance pupil. The apparatus further comprises an illumination system having an intermediate field plane and a field stop. The field stop is positioned in or in close proximity to the intermediate field plane and defines an illuminated field in the object plane that does not contain the optical axis of the projection lens. The illumination system is configured such that, in the object plane, a mean of the angles formed between all principal rays emanating from the intermediate field plane on the one hand and the optical axis of the projection lens on the other hand differs from 0°.