摘要:
Monitoring method and system are provided for dynamically determining airflow rate through and heat removal rate of an air-conditioning unit, such as a computer room air-conditioning unit. The method includes: sensing inlet and outlet temperatures of fluid passing through a heat exchanger associated with the air-conditioning unit; sensing air temperature at an air inlet side of the heat exchanger; automatically determining at least one of airflow rate through or heat removal rate of the air-conditioning unit, the automatically determining employing the sensed inlet temperature and outlet temperature of fluid passing through the heat exchanger, and the sensed air temperature at the air inlet side of the heat exchanger; and outputting the determined airflow rate through or heat removal rate of the air-conditioning unit. In one embodiment, the heat exchanger is an auxiliary air-to-air heat exchanger, and in another embodiment, the heat exchanger is the air-to-liquid heat exchanger of the air-conditioner.
摘要:
Systems and methods are provided for cooling an electronics rack, which includes a heat-generating electronics subsystem across which air flows from an air inlet to an air outlet side of the rack. First and second modular cooling units (MCUs) are associated with the rack and configured to provide system coolant to the electronics subsystem for cooling thereof. System coolant supply and return manifolds are in fluid communication with the MCUs for facilitating providing of system coolant to the electronics subsystem, and to an air-to-liquid heat exchanger associated with the rack for cooling air passing through the rack. A controller monitors the system coolant and automatically shuts off flow of system coolant through the heat exchanger, using at least one isolation valve, upon detection of failure at one of the MCUs, while allowing the remaining operational MCU to provide system coolant to the electronics subsystem for liquid cooling thereof.
摘要:
Monitoring method and system are provided for dynamically determining rack airflow rate and rack power consumption employing a heat exchanger disposed at an air outlet side of the electronics rack. The method includes: sensing air temperature at the air outlet side of the electronics rack, sensing coolant temperature at a coolant inlet and coolant temperature at a coolant outlet of the heat exchanger, and determining airflow rate through the electronics rack; and outputting the determined airflow rate through the electronics rack. The determining employs the sensed air temperature at the air outlet side of the rack and the sensed coolant temperatures at the coolant inlet and outlet of the heat exchanger. In one embodiment, the heat exchanger is an air-to-air heat exchanger, and in another embodiment, the heat exchanger is an air-to-liquid heat exchanger.
摘要:
A system for cooling an electronics system is provided. The cooling system includes a monolithic structure preconfigured for cooling multiple electronic components of the electronics system when coupled thereto. The monolithic structure includes multiple liquid-cooled cold plates configured and disposed in spaced relation to couple to respective electronic components; a plurality of coolant-carrying tubes metallurgically bonded in fluid communication with the multiple liquid-cooled cold plates, and a liquid-coolant header subassembly metallurgically bonded in fluid communication with multiple coolant-carrying tubes. The header subassembly includes a coolant supply header metallurgically bonded to coolant supply tubes and a coolant return header metallurgically bonded to coolant return tubes. When in use, the multiple liquid-cooled cold plates engage respective electronic components of the electronics system, and liquid coolant is distributed through the liquid-coolant header subassembly and plurality of coolant-carrying tubes to the cold plates for removal of heat generated by the respective electronic components.
摘要:
A system for cooling an electronics system is provided. The cooling system includes a monolithic structure preconfigured for cooling multiple electronic components of the electronics system when coupled thereto. The monolithic structure includes multiple liquid-cooled cold plates configured and disposed in spaced relation to couple to respective electronic components; a plurality of coolant-carrying tubes metallurgically bonded in fluid communication with the multiple liquid-cooled cold plates, and a liquid-coolant header subassembly metallurgically bonded in fluid communication with multiple coolant-carrying tubes. The header subassembly includes a coolant supply header metallurgically bonded to coolant supply tubes and a coolant return header metallurgically bonded to coolant return tubes. When in use, the multiple liquid-cooled cold plates engage respective electronic components of the electronics system, and liquid coolant is distributed through the liquid-coolant header subassembly and plurality of coolant-carrying tubes to the cold plates for removal of heat generated by the respective electronic components.
摘要:
A cooling apparatus and a direct cooling impingement module are provided, along with a method of fabrication thereof. The cooling apparatus and direct impingement cooling module include a manifold structure and a jet orifice plate for injecting coolant onto a surface to be cooled. The jet orifice plate, which includes a plurality of jet orifices for directing coolant at the surface to be cooled, is a unitary plate configured with a plurality of jet orifice structures. Each jet orifice structure projects from a lower surface of the jet orifice plate towards the surface to be cooled, and includes a respective jet orifice. The jet orifice structures are spaced to define coolant effluent removal regions therebetween which facilitate removal of coolant effluent from over a center region of the electronic component being cooled to a peripheral region thereof, thereby reducing pressure drop across the jet orifice plate.
摘要:
Apparatus and method are provided for facilitating cooling of an electronics rack employing an air delivery structure coupled to the electronics rack. The air delivery structure delivers air flow at a location external to the electronics rack and in a direction to facilitate mixing thereof with re-circulating exhausted inlet-to-outlet air flow from the air outlet side of the electronics rack to the air inlet side thereof. The delivered air flow is cooler than the re-circulating exhausted inlet-to-outlet air flow and when mixed with the re-circulating air flow facilitates lowering air inlet temperature at a portion of the air inlet side of the electronics rack, thereby enhancing cooling of the electronics rack.
摘要:
A method of fabricating a heat sink includes preparing a surface of a graphite-based substrate and removing particulate matter generated from the preparation of the surface of the substrate. A metal-based coating is applied at the surface of the prepared substrate. The prepared substrate having the metal-based coating is arranged to form a heat sink structure.
摘要:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat generating electronic device. The cooling apparatus includes a plurality of thermally conductive fins coupled to and projecting away from a surface to be cooled. The fins facilitate transfer of heat from the surface to be cooled. The apparatus further includes an integrated manifold having a plurality of inlet orifices for injecting coolant onto the surface to be cooled, and a plurality of outlet openings for exhausting coolant after impinging on the surface to be cooled. The inlet orifices and the outlet openings are interspersed in a common surface of the integrated manifold. Further, the integrated manifold and the surface to be cooled are disposed with the common surface of the manifold and the surface to be cooled in spaced, opposing relation, and with the plurality of thermally conductive fins disposed therebetween.
摘要:
An electronic device cooling assembly and fabrication method are provided which include a manifold with an orifice for injecting a cooling liquid onto a surface to be cooled, and an elastic pin support material with an opening aligned to the orifice of the manifold. Multiple thermally conductive pins are mounted within the support material, extending therefrom, and are sized to physically contact the surface to be cooled. The support material has a thickness and compliance which facilitates thermal interfacing of the pins to the surface by allowing second ends thereof to move vertically and tilt. The second end of each pin has a planar surface which is normal to an axis of the pin, and the support material facilitates the planar surfaces of the second pin ends establishing planar contact with the surface to be cooled, notwithstanding that the surface may be other than planar.