摘要:
A thermoelectric material comprises core-shell particles having a core formed from a core material and a shell formed from a shell material. In representative examples, the shell material is a material showing an appreciable thermoelectric effect in bulk. The core material preferably has a lower thermal conductivity than the shell material. In representative examples, the core material is an inorganic oxide such as silica or alumina, and the shell material is a chalcogenide semiconductor such as a telluride, for example bismuth telluride. A thermoelectric material including such core-shell particles may have an improved thermoelectric figure of merit compared with a bulk sample of the shell material alone. Embodiments of the invention further include thermoelectric devices using such thermoelectric materials, and preparation techniques. The use of core-shell nanoparticles allows highly uniform nanocomposites to be formed, and embodiments of the invention also includes other materials and devices using core-shell particles.
摘要:
A process for synthesizing a metal telluride is provided that includes the dissolution of a metal precursor in a solvent containing a ligand to form a metal-ligand complex soluble in the solvent. The metal-ligand complex is then reacted with a telluride-containing reagent to form metal telluride domains having a mean linear dimension of from 2 to 40 nanometers. NaHTe represents a well-suited telluride reagent. A composition is provided that includes a plurality of metal telluride crystalline domains (PbTe)1-x-y(SnTe)x(Bi2Te3)y (I) having a mean linear dimension of from 2 to 40 nanometers inclusive where x is between 0 and 1 inclusive and y is between 0 and 1 inclusive with the proviso that x+y is less than or equal to 1. Each of the metal telluride crystalline domains has a surface passivated with a saccharide moiety or a polydentate carboxylate. A densified mass having a density of greater than 95% of the theoretical density includes a plurality of lead telluride, tin telluride, bismuth telluride, or a combination thereof of domains having a mean linear dimension of from 2 to 40 nanometers inclusive that have been subjected to hot isotactic pressing.
摘要:
A process for forming thermoelectric nanoparticles includes the steps of a) forming a core material micro-emulsion, b) adding at least one shell material to the core material micro-emulsion forming composite thermoelectric nanoparticles having a core and shell structure.
摘要:
A method for the non-catalytic growth of nanowires is provided. The method includes a reaction chamber with the chamber having an inlet end, an exit end and capable of being heated to an elevated temperature. A carrier gas with a flow rate is allowed to enter the reaction chamber through the inlet end and exit the chamber through the exit end. Upon passing through the chamber the carrier gas comes into contact with a precursor which is heated within the reaction chamber. A collection substrate placed downstream from the precursor allows for the formation and growth of nanowires thereon without the use of a catalyst. A second embodiment of the present invention is comprised of a reaction chamber, a carrier gas, a precursor target, a laser beam and a collection substrate. The carrier gas with a flow rate and a gas pressure is allowed to enter the reaction chamber through an inlet end and exit the reaction chamber through the exit end. The laser beam is focused on the precursor target which affords for the evaporation of the precursor material and subsequent formation and growth of nanowires on the collection substrate.
摘要:
Disclosed is a method for producing, controlling the shape and size oft Pb-chalcogenide nanoparticles. The method includes preparing a Pb (Pb) precursor containing Pb and a carboxylic acid dissolved in a hydrocarbon solution and preparing a chalcogen element precursor containing a chalcogen element dissolved in a hydrocarbon solution. The amount of Pb and chalcogen in the respective precursor affords for a predetermined Pb:chalcogen element ratio to be present when the Pb precursor is mixed with the chalcogen element precursor. The Pb precursor is mixed with the chalcogen element precursor to form a Pb-chalcogen mixture in such a manner that Pb-chalcogenide nanoparticle nucleation does not occur. A nucleation and growth solution containing a surfactant is also prepared by heating the solution to a nucleation temperature sufficient to nucleate nanoparticles when the Pb-chalcogen element mixture is added. Upon injection of the Pb-chalcogen element mixture into the heated nucleation and growth solution, Pb-chalcogenide nanoparticles nucleate and a Pb-chalcogenide nanoparticle solution is formed, which is thereafter cooled to a growth temperature that is below the nucleation temperature. The Pb-chalcogenide nanoparticle solution at the growth temperature is held at the growth temperature for a predetermined time period such that a desired nanoparticle size is obtained. The Pb:chalcogen element ratio and a surfactant in the nucleation and growth solution can control the shape of the Pb-chalcogenide nanoparticles. The nucleation temperature, the growth temperature, the time at which the Pb-chalcogenide nanoparticle solution is held at the growth temperature and a surfactant can control the size of the Pb-chalcogenide nanoparticles.
摘要:
A method for the non-catalytic growth of nanowires is provided. The method includes a reaction chamber with the chamber having an inlet end, an exit end and capable of being heated to an elevated temperature. A carrier gas with a flow rate is allowed to enter the reaction chamber through the inlet end and exit the chamber through the exit end. Upon passing through the chamber the carrier gas comes into contact with a precursor which is heated within the reaction chamber. A collection substrate placed downstream from the precursor allows for the formation and growth of nanowires thereon without the use of a catalyst. A second embodiment of the present invention is comprised of a reaction chamber, a carrier gas, a precursor target, a laser beam and a collection substrate. The carrier gas with a flow rate and a gas pressure is allowed to enter the reaction chamber through an inlet end and exit the reaction chamber through the exit end. The laser beam is focused on the precursor target which affords for the evaporation of the precursor material and subsequent formation and growth of nanowires on the collection substrate.
摘要:
A method for the formation of copper wiring films includes the steps of forming a first copper film by a CVD method on a diffusion barrier film, which diffusion barrier film has been formed on a semiconductor substrate and in which a concavity has been established; heating the first copper film to a temperature within the range from 200 to 500° C.; and subsequently forming a second copper film on the first copper film by a plating method using the first copper film as an electrode.