摘要:
A method including depositing a material for a gate electrode on a substrate over a dielectric material, the gate electrode material comprising a metal; depositing a capping material over the gate electrode material under processing conditions that will not promote any oxygen species associated with the gate electrode material to travel through the gate electrode material to the substrate; and patterning a gate electrode structure comprising the gate electrode material.
摘要:
A semiconductor device comprising a semiconductor body having a top surface and laterally opposite sidewalls is formed on an insulating substrate. A gate dielectric layer is formed on the top surface of the semiconductor body and on the laterally opposite sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric on the top surface of the semiconductor body and is formed adjacent to the gate dielectric on the laterally opposite sidewalls of the semiconductor body. A thin film is then formed adjacent to the semiconductor body wherein the thin film produces a stress in the semiconductor body.
摘要:
Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer and reduced oxidation of a substrate beneath the high-k gate dielectric layer. An oxygen-scavenging spacer layer on side walls of the high-k gate dielectric layer and metal gate may reduce such oxidation during high temperature processes.
摘要:
A method for making a semiconductor device is described. That method comprises forming on a substrate a dielectric layer and a sacrificial structure that comprises a first layer and a second layer, such that the second layer is formed on the first layer and is wider than the first layer. After the sacrificial structure is removed to generate a trench, a metal gate electrode is formed within the trench.
摘要:
A structure to form an energy well within a Carbon nanotube is described. The structure includes a doped semiconductor region and an undoped semiconductor region. The Carbon nanotube is between the doped semiconductor region and the undoped semiconductor region. The structure also includes a delta doped semiconductor region. The undoped semiconductor region is between the Carbon nanotube and the delta doped region. The delta doped semiconductor region is doped opposite that of the doped semiconductor region.
摘要:
A complementary metal oxide semiconductor integrated circuit may be formed with NMOS and PMOS transistors that have high dielectric constant gate dielectric material over a semiconductor substrate. A metal barrier layer may be formed over the gate dielectric. A workfunction setting metal layer is formed over the metal barrier layer and a cap metal layer is formed over the workfunction setting metal layer.
摘要:
A method is described for providing a nanostructure suspended above a substrate surface. The method includes providing a nanostructure encased in an oxide shell on a substrate and depositing a sacrificial material and a support material over the oxide encased nanostructure. Then, the sacrificial material is removed to expose the oxide encased nanostructure. Once the oxide encased nanostructure has been exposed, the oxide shell is removed from the oxide encased nanostructure such that the nanostructure is suspended above the substrate surface.
摘要:
An atomic layer deposition process that reduces defective bonds formed when depositing atomic layers on a substrate or atomic layer when forming an integrated circuit device. As the layers are formed, a substrate or previous layer is exposed to a first reactant. After the substrate or layer has reacted with the first reactant, the substrate or layer is exposed to a second reactant. During or after exposure to the second reactant, electromagnetic radiation is applied to the substrate or layer. The electromagnetic radiation excites any defective bonds that may form in the deposition process to an energy level high enough to cause the elements forming the defective bonds to react with other elements contained in the second reactant. The reaction forms desirable bonds which attach to the substrate or previous layer to form an additional new layer.
摘要:
The present invention relates to the deposition of a layer above a transistor structure, causing crystalline stress within the transistor, and resulting in increased performance. The stress layer may be formed above a plurality of transistors formed on a substrate, or above a plurality of selected transistors.
摘要:
A method for making a semiconductor device is described. That method comprises forming an oxide layer on a substrate, and forming a high-k dielectric layer on the oxide layer. The oxide layer and the high-k dielectric layer are then annealed at a sufficient temperature for a sufficient time to generate a gate dielectric with a graded dielectric constant.