摘要:
In a method of forming semiconductor device, a semiconductor fin is formed on a semiconductor-on-insulator substrate. A gate dielectric is formed over at least a portion of the semiconductor fin. A first gate electrode material is formed over the gate dielectric and a second gate electrode material is formed over the first gate electrode material. The second gate electrode material is planarized and then etched selectively with respect to first gate electrode material. The first gate electrode material can then be etched.
摘要:
A semiconductor diode structure is provided which includes a substrate; a fin formed of a semiconducting material positioned vertically on the substrate, the fin includes a first heavily-doped region of a first doping type on one side and a second heavily-doped region of a second doping type on an opposite side; and a first conductor contacting the first heavily-doped region and a second conductor contacting the second heavily-doped region.
摘要:
In preferred embodiments of the present invention, a method of forming CMOS devices using SOI and hybrid substrate orientations is described. In accordance with a preferred embodiment, a substrate may have multiple crystal orientations. One logic gate in the substrate may comprise at least one N-FET on one crystal orientation and at least one P-FET on another crystal orientation. Another logic gate in the substrate may comprise at least one N-FET and at least one P-FET on the same orientation. Alternative embodiments further include determining the preferred cleavage planes of the substrates and orienting the substrates relative to each other in view of their respective preferred cleavage planes. In a preferred embodiment, the cleavage planes are not parallel.
摘要:
A new type of partially-depleted SOI MOSFET is described in which a tunneling connection between the gate and the base is introduced. This is achieved by using a gate dielectric whose thickness is below its tunneling threshold. The gate pedestal is made somewhat longer than normal and a region near one end is implanted to be P+ (or N+ in a PMOS device). This allows holes (electrons for PMOS) to tunnel from gate to base. Since the hole current is self limiting, applied voltages greater than 0.7 volts may be used without incurring excessive leakage (as is the case with prior art DTMOS devices). A process for manufacturing the device is also described.
摘要:
A structure to improve carrier mobility of a MOS device in an integrated circuit. The structure comprises a semiconductor substrate, containing a source region and a drain region; a conductive gate overlying a gate dielectric layer on the semiconductor substrate; a conformal stress film covering the source region, the drain region, and the conductive gate. In addition, the structure may comprise a semiconductor substrate, containing a source region and a drain region; a conductive gate overlying a gate dielectric layer on the semiconductor substrate; a plurality of stress films covering the source region, the drain region, and the conductive gate. Moreover, the structure may comprise a semiconductor substrate, containing a source region and a drain region; a conductive gate overlying a gate dielectric layer on the semiconductor substrate; a spacer disposed adjacent to the conductive gate, the spacer having a width less than 550 angstroms; a stress film covering the source region, the drain region, the conductive gate, and the spacer.
摘要:
A method for fabricating a Finfet device with body contacts and a device fabricated using the method are provided. In one example, a silicon-on-insulator substrate is provided. A T-shaped active region is defined in the silicon layer of the silicon-on-insulator substrate. A source region and a drain region form two ends of a cross bar of the T-shaped active region and a body contact region forms a leg of the T-shaped active region. A gate oxide layer is grown on the active region. A polysilicon layer is deposited overlying the gate oxide layer and patterned to form a gate, where an end of the gate partially overlies the body contact region to complete formation of a Finfet device with body contact.
摘要:
A method is disclosed for dicing a wafer having a base material with a diamond structure. The wafer first undergoes a polishing process, in which a predetermined portion of the wafer is polished away from its back side. The wafer is then diced through at least one line along a direction at a predetermined offset angle from a natural cleavage direction of the diamond structure.
摘要:
A method of fabricating a double gate, FINFET device structure in a silicon on insulator layer, in which the channel region formed in the SOI layer is defined with a narrowed, or necked shape, and wherein a composite insulator spacer is formed on the sides of the device structure, has been developed. A FINFET device structure shape is formed in an SOI layer via anisotropic RIE procedures, followed by a growth of a silicon dioxide gate insulator layer on the sides of the FINFET device structure shape. A gate structure is fabricated traversing the device structure and overlying the silicon dioxide gate insulator layer located on both sides of the narrowest portion of channel region. After formation of a source/drain region in wider, non-channel regions of the FINFET device structure shape, composite insulator spacers are formed on the sides of the FINFET shape and on the sides of the gate structure. Metal silicide is next formed on source/drain regions resulting in a FINFET device structure featuring a narrow channel region, and surrounded by composite insulator spacers located on the sides of the device structure.
摘要:
A method provides for dicing a wafer having a base material with a diamond structure. The wafer first undergoes a polishing process, in which a predetermined portion of the wafer is polished away from its back side. The wafer is then diced through at least one line along a direction at a predetermined offset angle from a natural cleavage direction of the diamond structure. A wafer is produced with one or more dies formed thereon with at least one of its edges at an offset angle from a natural cleavage direction of a diamond structure of a base material forming the wafer. At least one dicing line has one or more protection elements for protecting the dies from undesired cracking while the wafer is being diced along the dicing line.
摘要:
A semiconductor structure and a method for its manufacture are provided. In one example, the structure includes a well region doped with a first type dopant (e.g., a P-type or N-type dopant). A gate pedestal formed over the well region has two ends, one of which at least partially overlies the well region and is doped with the first type dopant. A dielectric layer is positioned between the gate pedestal and the well region. Source and drain regions formed on opposite sides of the gate pedestal within the well region are doped with a second type dopant opposite in type to the first type dopant.