Abstract:
In some examples, a cartridge includes a printhead comprising a fluid feed slot, a fluid chamber formed between a nozzle layer and a passivation layer, the fluid chamber fluidically coupling the fluid feed slot and a nozzle of the nozzle layer, and a printhead-integrated sensor to sense a property of a fluid in the fluid chamber, the sensor including a ground electrode exposed to the fluid chamber through an opening in the passivation layer.
Abstract:
An example provides a fluid ejection apparatus including a first firing resistor and a second firing resistor to selectively cause fluid to be ejected through a single nozzle, and a parasitic resistor arranged to add a parasitic resistance to the first firing resistor.
Abstract:
In an example, an apparatus includes an electrically conductive component having a first side and a second side, a first switching material formed on the first side of the electrically conductive component, and a second switching material formed on the second side of the electrically conductive component. The second switching material may include a different material than the first switching material and resistance states of each of the first switching material and the second switching material are to be modified through application of electric fields through the first switching material and the second switching material. The apparatus may also include an electrode in contact with one of the first switching material and the second switching material.
Abstract:
Addressing an EPROM on a printhead is described. In an example, a printhead includes an electronically programmable read-only memory (EPROM) having a bank of cells arranged in rows and columns, each of the cells having a addressing port, a row select port, and a column select port. A conductor is coupled to the addressing portion of each of the cells. A shift register circuit is coupled to at least one of the row select port and the column select port of each of the cells, the shift register circuit storing samples of an input signal responsive to a plurality of clock signals. A decoder is coupled to the shift register circuit to provide the input signal based on a logical combination of a plurality of data signals and at least a portion of the clock signals.
Abstract:
Printheads having memories formed thereon are disclosed. An example apparatus includes a printhead body comprising a first metal layer. The example apparatus also include a memory formed on the print-head body. The memory includes the first metal layer as a first electrode, a second metal layer as a second electrode, and a switching oxide layer between the first and second metal layers.
Abstract:
A printhead with a separate address generator for ink level sensors is described. In an example, a printhead includes drop ejectors fluidically coupled to nozzles, at least one nozzle address generator, nozzle decoders coupled to nozzle address generator(s) and the drop ejectors, ink level sensors each having a sensor circuit in a sensor chamber and a purging resistor circuit, a sensor address generator, and sensor decoders coupled to the sensor address generator and the purging resistor circuit in each of the ink level sensors.
Abstract:
In an example implementation, a touch-sensitive illuminating display includes a transparent flexible touch layer, a transparent top conductive layer adjacent the flexible touch layer, a bottom conductive layer, and an electroluminescent layer and variable-thickness dielectric layer sandwiched between the top and bottom conductive layers. Pressure against the flexible touch layer is to reduce the dielectric layer thickness and bring the top and bottom conductive layers closer together, causing the electroluminescent layer to emit light where the pressure is applied.
Abstract:
One example of a device includes an antenna, a memristor code comparator, and a controller. The antenna is to receive a wake up signal. The memristor code comparator is to compare the wake up signal to a reference signal. The controller is to provide a trigger signal to wake up the device in response to the wake up signal matching the reference signal.
Abstract:
A device for detecting isotopes includes an isotope portion including a material including an isotope of an element, a reaction control portion to cause a chemical reaction of the material, and an electrical parameter portion to measure a change in an electrical parameter of the material, where the change in the electrical parameter is caused by the chemical reaction, and where the change in the electrical parameter is dependent on the isotope in the material, to detect the isotope by comparing the change in the electrical parameter of the material with a known electrical parameter associated with a known isotope.
Abstract:
Apparatus, systems, articles of manufacture, and methods to facilitate capacitive code comparing are disclosed. An example apparatus includes a comparator to receive a first portion of a first input and a second portion of a second input, the comparator including a capacitor. The example apparatus further includes a peripheral determination circuit to cause the capacitor to couple the first portion to the second portion; in response to coupling the first portion to the second portion, ground the capacitor; sense a current discharged by the grounded capacitor; and determine a Hamming distance of the first input and the second input based on the sensed current discharged by the capacitor.