Abstract:
Magnetoresistive random access memory (MRAM) devices include a first magnetic layer. A tunnel barrier layer is formed on the first magnetic layer. The tunnel barrier includes first regions having a first thickness and second regions having a second thickness that is greater than the first thickness. A second magnetic layer is formed on the tunnel barrier layer.
Abstract:
Magnetoresistive random access memory (MRAM) devices and methods for making the same include growing a tunnel barrier layer on a first magnetic layer. A thin layer of non-wetting material is formed on the tunnel barrier layer, such that the non-wetting material forms distinct regions on the tunnel barrier layer. A second magnetic layer is grown on the tunnel barrier layer.
Abstract:
A magnetic material includes a cobalt layer between opposing iron layers. The iron layers include iron and are body-centered cubic (BCC), the cobalt layer comprises cobalt and is BCC or amorphous, and the magnetic material has a perpendicular magnetic anisotropy (PMA).
Abstract:
A magnetic material includes a cobalt layer between opposing iron layers. The iron layers include iron and are body-centered cubic (BCC), the cobalt layer comprises cobalt and is BCC or amorphous, and the magnetic material has a perpendicular magnetic anisotropy (PMA).
Abstract:
A magnetic material includes a cobalt layer between opposing iron layers. The iron layers include iron and are body-centered cubic (BCC), the cobalt layer comprises cobalt and is BCC or amorphous, and the magnetic material has a perpendicular magnetic anisotropy (PMA).
Abstract:
A mechanism relates to magnetic random access memory (MRAM). A free magnetic layer is provided and first fixed layers are disposed above the free magnetic layer. Second fixed layers are disposed below the free magnetic layer. The first fixed layers and the second fixed layers both comprise a rare earth element.
Abstract:
A mechanism is provided for a spin torque transfer random access memory device. A tunnel barrier is disposed on a reference layer, and a free layer is disposed on the tunnel barrier. The free layer includes an iron layer as a top part of the free layer. A metal oxide layer is disposed on the iron layer, and a cap layer is disposed on the metal oxide layer.
Abstract:
A mechanism is provided for a structure with perpendicular magnetic anisotropy. A bottom oxide layer is disposed, and a magnetic layer is disposed adjacent to the bottom oxide layer. The magnetic layer includes iron and is magnetized perpendicularly to a plane of the magnetic layer. A top oxide layer is disposed adjacent to the magnetic layer.
Abstract:
A mechanism is provided for a spin torque transfer random access memory device. A reference layer is disposed on a seed layer. A tunnel barrier is disposed on the reference layer. A free layer is disposed on the tunnel barrier. A cap layer is disposed on the free layer. The free layer includes a magnetic layer and a metal oxide layer, in which the magnetic layer is disposed on the tunnel barrier and the metal oxide layer is disposed on the magnetic layer. A metal material used in the metal oxide layer includes at least one of Ti, Ta, Ru, Hf, Al, La, and any combination thereof.
Abstract:
A mechanism is provided for a spin torque transfer random access memory device. A tunnel barrier is disposed on a reference layer, and a free layer is disposed on the tunnel barrier. The free layer includes an iron layer as a top part of the free layer. A metal oxide layer is disposed on the iron layer, and a cap layer is disposed on the metal oxide layer.