SILICON GERMANIUM ALLOY FINS WITH REDUCED DEFECTS

    公开(公告)号:US20200083357A1

    公开(公告)日:2020-03-12

    申请号:US16683979

    申请日:2019-11-14

    Abstract: A silicon germanium alloy is formed on sidewall surfaces of a silicon fin. An oxidation process or a thermal anneal is employed to convert a portion of the silicon fin into a silicon germanium alloy fin. In some embodiments, the silicon germanium alloy fin has a wide upper portion and a narrower lower portion. In such an embodiment, the wide upper portion has a greater germanium content than the narrower lower portion. In other embodiments, the silicon germanium alloy fin has a narrow upper portion and a wider lower portion. In this embodiment, the narrow upper portion of the silicon germanium alloy fin has a greater germanium content than the wider lower portion of the silicon germanium alloy fin.

    Self-aligned contact process enabled by low temperature

    公开(公告)号:US10566454B2

    公开(公告)日:2020-02-18

    申请号:US16032213

    申请日:2018-07-11

    Abstract: Self-aligned contacts of a semiconductor device are fabricated by forming a metal gate structure on a portion of a semiconductor layer of a substrate. The metal gate structure contacts inner sidewalls of a gate spacer. A second sacrificial epitaxial layer is formed on a first sacrificial epitaxial layer. The first sacrificial epitaxial layer is adjacent to the gate spacer and is formed on source/drain regions of the semiconductor layer. The first and second sacrificial epitaxial layers are recessed. The recessing exposes at least a portion of the source/drain regions. A first dielectric layer is formed on the exposed portions of the source/drain regions, and over the gate spacer and metal gate structure. At least one cavity within the first dielectric layer is formed above at least one of the exposed portions of source/drain regions. At least one metal contact is formed within the at least one cavity.

    Silicon germanium alloy fins with reduced defects

    公开(公告)号:US10418463B2

    公开(公告)日:2019-09-17

    申请号:US15445344

    申请日:2017-02-28

    Abstract: A silicon germanium alloy is formed on sidewall surfaces of a silicon fin. An oxidation process or a thermal anneal is employed to convert a portion of the silicon fin into a silicon germanium alloy fin. In some embodiments, the silicon germanium alloy fin has a wide upper portion and a narrower lower portion. In such an embodiment, the wide upper portion has a greater germanium content than the narrower lower portion. In other embodiments, the silicon germanium alloy fin has a narrow upper portion and a wider lower portion. In this embodiment, the narrow upper portion of the silicon germanium alloy fin has a greater germanium content than the wider lower portion of the silicon germanium alloy fin.

    Utilizing multilayer gate spacer to reduce erosion of semiconductor fin during spacer patterning

    公开(公告)号:US10243079B2

    公开(公告)日:2019-03-26

    申请号:US15639721

    申请日:2017-06-30

    Abstract: FinFET devices comprising multilayer gate spacers are provided, as well as methods for fabricating FinFET devices in which multilayer gate spacers are utilized to prevent or otherwise minimize the erosion of vertical semiconductor fins when forming the gate spacers. For example, a method for fabricating a semiconductor device comprises forming a dummy gate structure over a portion of a vertical semiconductor fin of a FinFET device, and forming a multilayer gate spacer on the dummy gate structure. The multilayer gate spacer comprises a first dielectric layer and a second dielectric layer, wherein the first dielectric layer has etch selectivity with respect to the vertical semiconductor fin and the second dielectric layer. In one embodiment, the first dielectric layer comprises silicon oxycarbonitride (SiOCN) and the second dielectric layer comprises silicon boron carbon nitride (SiBCN).

Patent Agency Ranking