摘要:
A swash plate for a swash plate compressor, wherein aluminum alloy containing 12 to 60% of Si and, as required, 0.1 to 30% of Sn is sprayed onto the iron or aluminum base plate of the swash plate compressor to form a seizure-resisting and abrasion-resisting surface layer dispersed with granulated Si.
摘要:
In a variable displacement compressor of the invention, cylinder bores (111) and a crankcase (121) are formed in a housing, single-ended pistons (37) are fitted in the cylinder bores (111), and a cam plate (23) is provided in the crankcase (121). The displacement capacity of the compressor is varied by controlling the angle of inclination of the cam plate (23) in accordance with the difference between the internal pressure of the crankcase (121) and an suction pressure present on both sides of each single-ended piston (37). A dampening or muffler chamber (65) is provided downstream of an output channel (114) through which a refrigerant gas discharged from the cylinder bores (111) passes. A check valve (69) which opens and closes in accordance with a pressure difference between upstream and downstream sides of the output channel (114) is provided in the output channel (114), upstream of the muffler chamber (65). The present invention reduces the effects of pressure pulsations caused by the compression motion of the compressor and caused by the valve body of the open/close device hunting, has no bad effects on the external refrigerant circuit connected to the compressor, and increases the reliability of the lip seal.
摘要:
A method for machining a variable displacement compressor piston. The piston is connected to a swash plate by a pair of semi-spherical shoes. One end of the piston has a slot for receiving the swash plate. The slot includes a pair of opposed walls. Each wall has a concave spherical recess for supporting one of the shoes. When forming the recesses, a tool having an asymmetrical spherical cutter is placed between the slot walls in the piston. Then, the piston is rotated about a machining axis that is perpendicular to the axis of the piston and intersects the midpoint between the walls. Then, the tool is moved such that the center of the cutter is located on the rotation axis of the piston. This forms the recesses on the walls such that the recesses conform to a single sphere, the center of which is located on the axis of the piston.
摘要:
A refrigerating system for air-conditioning an air-conditioned area, and incorporating therein a variable capacity refrigerant compressor in which the delivery amount of the compressed refrigerant is varied by changing the stroke of the reciprocating pistons which are operatively connected to a swash plate mechanism by changing its angle of inclination in response to a change in the pressure in a crank chamber, a condenser for condensing the compressed gas-phase refrigerant from the compressor, a pressure reducing unit for reducing the pressure of the liquid-phase refrigerant, an evaporator for vaporizing the liquid-phase refrigerant by removing heat from the air, around the evaporator, which cools the air-conditioned area, and a refrigerant supply conduit supplying the crank chamber of the compressor with a part of the liquid-phase refrigerant flowing in a portion of the refrigerant conduit extending from the condenser to the evaporator so that during the minimum capacity operation of the compressor, the compressor is cooled and lubricated by the supplied refrigerant. A flow regulating unit for adjustably regulating the flow of the liquid-phase refrigerant flowing through the refrigerant supply conduit is also arranged.
摘要:
A variable capacity swash plate type compressor having a hinge unit having a support arm protruding from a back side of a rotor, and a guide pin having one end thereof fixed onto a rotatable swash plate. The support arm has guide holes or guide surfaces which are parallel with a plane passing through a central axis "O" of a drive shaft and the top dead center position of the swash plate, the holes extending in a direction in which the holes approach the drive shaft from the outer edge of the rotor. Sections taken so as to be perpendicular to the center lines of the holes (guide surfaces) can be circular. A spherical element interacting with the guide holes is arranged at the end of the guide pin away from the rotatable swash plate. Thus, the spherical element of the guide pin interacts with the guide holes so that the suction force, compressive reaction force and torque are sustained on a line.
摘要:
A variable capacity single headed piston swash plate type refrigerant compressor is provided with a double fulcrum hinge mechanism having a pair of hinges for providing a pivotal connection between a rotary support element of a drive shaft and a swash plate assembly, causing reciprocation of a plurality of single headed pistons in cylinder bores for compressing a refrigerant gas. The pair of hinges of the double fulcrum hinge mechanism cooperate to absorb reaction forces of the compression and suction of the refrigerant gas acting from the pistons on the swash plate assembly to thereby prevent application of a local load to a sleeve element on which the swash plate assembly is turnably mounted.
摘要:
A variable displacement compressor that draws refrigerant from a suction pressure zone and discharges the refrigerant to a discharge pressure zone, and controls displacement according to a pressure in a control pressure chamber. The compressor has a cam body, pistons, a supply passage, a release passage, and an on-off valve. The inclination angle of the cam body is changeable based on the pressure in the control pressure chamber. A piston reciprocates in each cylinder bore as the cam body rotates. The supply passage supplies the refrigerant in the discharge pressure zone to the control pressure chamber. The release passage releases the refrigerant in the control pressure chamber to the suction pressure zone. The on-off valve selectively opens and closes the release passage in response to changes of the temperature. The on-off valve shuts off the release passage when the temperature is equal to or higher than a predetermined temperature.
摘要:
A variable displacement compressor in which variable control of displacement is effected through adjustment of a crank chamber pressure, includes: a suction port; a suction chamber; a suction passage establishing communication between the suction port and the suction chamber; and an opening control valve arranged in the suction passage and adapted to adjust the opening of the suction passage based on a pressure difference between a suction pressure in the suction port and the crank chamber pressure.
摘要:
A variable displacement compressor has a drive shaft, a rotor supported by the drive shaft, a drive plate supported by the drive shaft and a hinge mechanism located between the rotor and the drive plate. The hinge mechanism includes a cam, which is located on the rotor, and a guide portion, which is located on the drive plate. The cam has a cam surface, which has a predetermined profile. One of the cam surface and the guide portion slides against the other in accordance with inclination of the drive plate. The guide portion traces a path corresponding to the profile of the cam surface with respect to the cam. The path includes a first path corresponding to a small displacement region of the compressor and a second path corresponding to a large displacement region of the compressor. The profile of the cam surface is determined such that the first path and the second path bulge in a direction opposite to each other to compensate for fluctuation of a top dead center position of the piston.
摘要:
A piston type compressor includes a housing, which defines a crank chamber. A valve plate forms a part of the housing. A drive shaft is located in the crank chamber. A contact member is plastically deformed and press fitted to the drive shaft. An inner wall and a first sub-plate are located in the housing and limit the axial movement of the drive shaft, respectively. After the contact member is attached to the drive shaft, the axial load required to change the position of the contact member is greater than the maximum axial load applied to the drive shaft due to the increase of the pressure in the crank chamber, and less than the load applied to the contact member by the first sub-plate in accordance with the difference in the thermal expansion coefficient of the housing and the drive shaft.