Abstract:
A method for manufacturing semiconductor device is disclosed. A substrate with a plurality of protruding strips formed vertically thereon is provided. A charging trapping layer is formed conformally on the protruding strips. A conductive layer is formed conformally on the charging trapping layer. A thin hard mask is conformally deposited on the conductive layer, wherein a plurality of trenches are formed between the thin hard mask on the protruding strips. A patterned photo resist is formed on the thin hard mask, wherein the patterned photo resist fills into the trenches. The thin hard mask is patterned according to the patterned photo resist to form a patterned hard mask layer and expose a portion of the conductive layer. The conductive layer is patterned for removing the exposed portion of the conductive layer to form a patterned conductive layer and expose a portion of the charging trapping layer.
Abstract:
A method for manufacturing semiconductor device is disclosed. A substrate with a conductive layer is provided, and a dummy layer is formed on the conductive layer. The dummy layer and at least a portion of the conductive layer are patterned to form several trenches. A first dielectric layer is formed to fill into the trenches so as to form several first dielectric elements in the trenches. The dummy layer is removed to expose parts of the first dielectric elements. A second dielectric layer is formed on the exposed parts of the first dielectric elements, and the second dielectric layer is patterned so that a spacer is formed at a lateral side of each exposed first dielectric element. The conductive layer is patterned by the spacers, so that a patterned conductive portion is formed at each lateral side of each first dielectric element.
Abstract:
A three-dimensional stacked IC device includes a stack of at least first, second, third and fourth contact levels at an interconnect region. Each contact level has a conductive layer and an insulation layer. First, second, third and fourth electrical conductors pass through portions of the stack of contact levels. The first, second, third and fourth electrical conductors are in electrical contact with the first, second, third and fourth conductive layers, respectively. A dielectric sidewall spacer circumferentially surrounds the second, third and fourth electrical conductors so that the second, third and fourth electrical conductors only electrically contact the respective second, third and fourth conductive layers.
Abstract:
A data search method for a memory device is provided. The data search method includes: based on a recorded compression mode, vectoring a search data to generate a search data vector, and based on the recorded compression mode, compressing the search data and a plurality of objects in a database; setting a search condition; searching the objects of the database by the search data vector to determine whether the search data is matched with the objects of the database; and recording and outputting at least one matched object of the database, the at least one matched object matched with the search data.
Abstract:
A memory device and a manufacturing method for the same are provided. The memory device includes a stacked body structure and a staircase structure. The stacked body structure includes a first sub-stacked body structure and a second sub-stacked body structure. The staircase structure is electrically connected to the stacked body structure. The staircase structure includes a first sub-staircase structure and a second sub-staircase structure. Each of the first sub-staircase structure and the second sub-staircase structure includes a first staircase portion and a second staircase portion. The first sub-stacked body structure and the second sub-stacked body structure are respectively connected to the first staircase portion of the first sub-staircase structure and the first staircase portion of the second sub-staircase structure.
Abstract:
A resistor circuit, an artificial intelligence chip and a method for manufacturing the same are provided. The resistor circuit includes a stack structure. The stack structure includes resistive material layers and insulating layers stacked alternately. The resistor circuit includes at least two unit resistors electrically connected in series or parallel. The at least two unit resistors are respectively defined in the resistive material layers of different layers.
Abstract:
A technology for cleaning a training data set for a neural network using dirty training data starts by accessing a labeled training data set that includes relatively dirty labeled data elements. The labeled training data set is divided into a first subset A and a second subset B. The procedure includes cycling between the subsets A and B, including producing refined model-filtered subsets of subsets A and B to provide a cleaned data set. Each refined model-filtered subset can have improved cleanliness and increased numbers of elements.
Abstract:
A neuromorphic computing device includes synapse weights. The synapse weights have different weight values resulted from different transistor arrangements of the synapse weights.
Abstract:
A memory device comprises a stack of linking elements including a first group of linking elements and a second group of linking elements different than the first group of linking elements. Interlayer connectors in a first plurality of interlayer connectors are connected to respective linking elements in the first group of linking elements. Interlayer connectors in a second plurality of interlayer connectors are connected to linking elements in the second group of linking elements. Patterned conductor lines in a first layer of patterned conductor lines are coupled to respective interlayer connectors in the first plurality of interlayer connectors. Patterned conductor lines in a second layer of patterned conductor lines disposed higher than the first layer of patterned conductor lines are coupled to respective interlayer connectors in the second plurality of interlayer connectors.
Abstract:
A method for manufacturing a multi-layer structure is provided. The method includes following steps. First, a stack of alternate conductive layers and insulating layers is formed on a substrate, and the stack includes a multi-layer area and a contact area adjacent to the multi-layer area. Next, a plurality of first openings are formed in the contact area. Then, a conductive connecting structure is formed on the stack and into the first openings. Thereafter, the stack is patterned. The conductive connecting structure continuously extends on the contact area and into the first openings to maintain an electrical connection among the conductive layers while the stack is patterned.