摘要:
A method is provided, the method comprising forming a first dielectric layer above a first structure layer, forming a first opening in the first dielectric layer, and forming a first copper structure above the first dielectric layer and in the first opening. The method also comprises annealing the first copper structure using one of a furnace anneal process performed at a temperature ranging from approximately 100-400° C. for a time ranging from approximately 10-90 minutes and a rapid thermal anneal (RTA) process performed at a temperature ranging from approximately 100-400° C. for a time ranging from approximately 10-180 seconds.
摘要:
The present invention is directed to a method of making a semiconductor device. In one illustrative embodiment, the method comprises forming a first layer comprised of polysilicon, forming a second layer comprised of a refractory metal above the layer of polysilicon and converting at least a portion of the second layer to a first metal silicide. The method further comprises forming an anti-reflective coating layer above the layer of refractory metal or the first metal silicide layer, and patterning the first metal silicide layer and the layer of polysilicon to define a gate stack comprised of a first metal silicide region and a layer of polysilicon, forming a plurality of source/drain regions in the substrate, forming a third layer comprised of a refractory metal above at least the gate stack and the source/drain regions, and converting at least a portion of the third layer to a second metal silicide region.
摘要:
A method for forming ultra shallow junctions in a semiconductor wafer with reduced junction leakage arising from a silicidation process amorphizes the semiconductor material in the gate and source/drain junctions prior to the deposition of the metal during silicidation. After the gate and source/drain junctions are formed in a semiconductor device, non-dopant material, such as silicon or germanium, is implanted into the semiconductor material in an unmasked implantation procedure. This highly controllable implanting creates amorphous silicon regions with a substantially smooth interface with the crystalline silicon. When the silicide regions are formed during subsequent annealing steps, the silicide forms in a manner that follows the amorphous regions so that the silicide/silicon interface is also substantially smooth and junction leakage induced by silicidation is prevented.
摘要:
In a method for forming an interlayer dielectric (ILD) coating on microcircuit interconnect lines of a substrate, a SiON layer is formed by using plasma-enhanced chemical vapor deposition. The deposition using a plasma formed of nitrogen, nitrous oxide, and silane gases, with the gases being dispensed at regulated flow rates and being energized by a radio frequency power source. The plasma reacts to form SiON which is deposited on a semiconductor substrate. During processing the deposition temperature is reduced to under 400 degrees Celsius, specifically temperatures in the range of about 350 degrees Celsius to about 380 degrees, Celsius, resulting in a substantially reduced incidence of stress-induced voiding in the underlying interconnect lines. Additionally, during deposition, minor adjustments are made to deposition temperature and process pressure to control the optical characteristics of the SiON layer. The SiON layer is tested for acceptable optical properties and acceptable SiON layers are coated with a SiO2 layer to complete formation of the ILD. Once the ILD is formed the substrate is in readiness for further processing.
摘要:
Borderless submicron vias are formed between patterned metal layers gap filled with a high density plasma oxide. Heat treatment is conducted after chemical vapor deposition of the high density plasma oxide to substantially increase the grain size of the patterned metal layers, thereby improving electromigration resistance.
摘要:
An integrated circuit is provided. A gate dielectric is formed on a semiconductor substrate, and a gate is formed over the gate dielectric. A sidewall spacer is formed around the gate and a source/drain junction is formed in the semiconductor substrate using the sidewall spacer. A bottom silicide metal is deposited on the source/drain junction and then a top silicide metal is deposited on the bottom silicide metal. The bottom and top silicide metals are formed into their silicides. A dielectric layer is deposited above the semiconductor substrate and a contact is formed in the dielectric layer to the top silicide.
摘要:
An exemplary embodiment relates to a method for forming a metal oxide semiconductor field effect transistor (MOSFET). The method includes providing a substrate having a gate formed above the substrate and performing at least one of the following depositing steps: depositing a spacer layer and forming a spacer around a gate and gate insulator located above a layer of silicon above the substrate; depositing an etch stop layer above the spacer, the gate, and the layer of silicon; and depositing a dielectric layer above the etch stop layer. At least one of the depositing a spacer layer, depositing an etch stop layer, and depositing a dielectric layer comprises high compression deposition which increases in tensile strain in the layer of silicon.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be a ALD process.
摘要:
A structure of an integrated circuit is provided. A gate dielectric is formed on a semiconductor substrate, and a gate is formed over a gate dielectric on the semiconductor substrate. Source/drain junctions are formed in the semiconductor substrate. Ultra-uniform suicides are formed on the source/drain junctions, and a dielectric layer is deposited above the semiconductor substrate. Contacts are then formed in the dielectric layer to the ultra-uniform silicides.
摘要:
A method of forming an integrated circuit with a semiconductor substrate is provided. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. Source/drain junctions are formed in the semiconductor substrate. A transition metal layer is formed on the source/drain junctions and on the gate. An interlayer dielectric is formed above the semiconductor substrate. Contacts are then formed in the interlayer dielectric, whereby a silicide is formed from the transition metal layer at a temperature no higher than the maximum temperature at which the interlayer dielectric and the contacts are formed.