Abstract:
A sensing and storage system for fluid balance during dialysis is provided. The sensing and storage system has flow sensors on either side of a dialyzer in a controlled volume dialysate flow path. The sensors are positioned so that no fluid can be added to or removed from the dialysate flow path between the sensors except for that which is added or removed by action of a control pump. The sensing and storage system can have a fluid removal line for the removal of fluid from the dialysate flow loop.
Abstract:
A regeneration system that has a first regeneration module containing a first chosen regenerative substance; a second regeneration module containing the first chosen regenerative substance; and a first mixing chamber. A first outlet stream of a fluid sequentially exits the first mixing chamber, flows through the first regeneration module in fluid communication with the first chosen regenerative substance and returns to the first mixing chamber, and a second outlet stream of the fluid sequentially exits the first mixing chamber and flows through the second regeneration module in fluid communication with the first chosen regenerative substance.
Abstract:
The invention relates to an infusate frame for use in dialysis. The infusate frame includes one or more openings cut-out of a rigid support frame. The one or more openings are sized and shaped complementary to one or more infusate containers, ensuring that only a single infusate container can occupy a specific opening.
Abstract:
The degassing system can include a degassing vessel and can utilize a vacuum pump and a fluid pump located downstream of the degassing vessel to control the pressure within the degassing vessel in order to control the concentration of gases in fluid exiting the degassing system. The degassing system can further comprise sensors in communication with the pumps to control the rate of flow and pressure through the degassing system. The degassing system may be placed in a dialysate flow path to remove dissolved gases including carbon dioxide from the dialysate.
Abstract:
A sorbent based monitoring system for measuring the solute concentration of at least one component of a fluid. The system has a sorbent regeneration system for regeneration of the fluid and has a sorbent cartridge that has at least one material layer. The fluid is conveyed through the sorbent cartridge and contacts at least one sensor after having contacted at least one material layer.
Abstract:
The degassing system can include a degassing vessel and can utilize a vacuum pump and a fluid pump located downstream of the degassing vessel to control the pressure within the degassing vessel in order to control the concentration of gases in fluid exiting the degassing system. The degassing system can further comprise sensors in communication with the pumps to control the rate of flow and pressure through the degassing system. The degassing system may be placed in a dialysate flow path to remove dissolved gases including carbon dioxide from the dialysate.
Abstract:
A regeneration system that has a first regeneration module containing a first chosen regenerative substance; a second regeneration module containing the first chosen regenerative substance; and a first mixing chamber. A first outlet stream of a fluid sequentially exits the first mixing chamber, flows through the first regeneration module in fluid communication with the first chosen regenerative substance and returns to the first mixing chamber, and a second outlet stream of the fluid sequentially exits the first mixing chamber and flows through the second regeneration module in fluid communication with the first chosen regenerative substance.
Abstract:
Parallel modules for in-line recharging of sorbent materials using alternate duty cycles for a sorbent cartridge. The sorbent cartridge can have two or more modules contained therein having connectors connecting each of the modules. One or more of the modules can be reusable and the sorbent materials therein can be recharged.