摘要:
A set of planar, two-dimensional optical devices is able to be created in a sub-micron surface layer of an SOI structure, or within a sub-micron thick combination of an SOI surface layer and an overlying polysilicon layer. Conventional masking/etching techniques may be used to form a variety of passive and optical devices in this SOI platform. Various regions of the devices may be doped to form the active device structures. Additionally, the polysilicon layer may be separately patterned to provide a region of effective mode index change for a propagating optical signal.
摘要:
The surface silicon layer (SOI layer) of an SOI-based optical modulator is processed to exhibit a corrugated surface along the direction of optical signal propagation. The required dielectric layer (i.e., relatively thin “gate oxide”) is formed over the corrugated structure in a manner that preserves the corrugated topology. A second silicon layer, required to form the modulator structure, is then formed over the gate oxide in a manner that follows the corrugated topology, where the overlapping portion of the corrugated SOI layer, gate oxide and second silicon layer defines the active region of the modulator. The utilization of the corrugated active region increases the area over which optical field intensity will overlap with the free carrier modulation region, improving the modulator's efficiency.
摘要:
A photodetector integrated within a silicon-on-insulator (SOI) structure is formed directly upon an inverse nanotaper endface coupling region to reduce polarization sensitivity at the detector's input. The photodetector may be germanium-based PN (PIN) junction photodetector, a SiGe photodetector, a metal/silicon Schottky barrier photodetector, or any other suitable silicon-based photodetector. The inverse nanotaper photodetector may also be formed as an in-line monitoring device, converting only a portion of the in-coupled optical signal and allowing for the remainder to thereafter propagate along an associated optical waveguide.
摘要:
A silicon-based IR photodetector is formed within a silicon-on-insulator (SOI) structure by placing a metallic strip (preferably, a silicide) over a portion of an optical waveguide formed within a planar silicon surface layer (i.e., “planar SOI layer”) of the SOI structure, the planar SOI layer comprising a thickness of less than one micron. Room temperature operation of the photodetector is accomplished as a result of the relatively low dark current associated with the SOI-based structure and the ability to use a relatively small surface area silicide strip to collect the photocurrent. The planar SOI layer may be doped, and the geometry of the silicide strip may be modified, as desired, to achieve improved results over prior art silicon-based photodetectors.
摘要:
A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which then transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index
摘要:
A planar optical isolator is formed within the silicon surface layer of an SOI structure. A forward-directed signal is applied to an input waveguiding section of the isolator and thereafter propagates through a non-reciprocal waveguide coupling region into an output waveguide section. A rearward-directed signal enters via the output waveguide section and is thereafter coupled into the non-reciprocal waveguide structure, where the geometry of the structure functions to couple only a small amount of the reflected signal into the input waveguide section. In one embodiment, the non-reciprocal structure comprises an N-way directional coupler (with one output waveguide, one input waveguide and N−1 isolating waveguides). In another embodiment, the non-reciprocal structure comprises a waveguide expansion region including a tapered, mode-matching portion coupled to the output waveguide and an enlarged, non-mode matching portion coupled to the input waveguide such that a majority of a reflected signal will be mismatched with respect to the input waveguide section. By cascading a number of such planar SOI-based structures, increased isolation can be achieved—advantageously within a monolithic arrangement.
摘要:
A wafer-level testing arrangement for opto-electronic devices formed in a silicon-on-insulator (SOI) wafer structure utilizes a single opto-electronic testing element to perform both optical and electrical testing. Beam steering optics may be formed on the testing element and used to facilitate the coupling between optical probe signals and optical coupling elements (e.g., prism couplers, gratings) formed on the top surface of the SOI structure. The optical test signals are thereafter directed into optical waveguides formed in the top layer of the SOI structure. The opto-electronic testing element also comprises a plurality of electrical test pins that are positioned to contact a plurality of bondpad test sites on the opto-electronic device and perform electrical testing operations. The optical test signal results may be converted into electrical representations within the SOI structure and thus returned to the testing element as electrical signals.
摘要:
An arrangement for achieving and maintaining high efficiency coupling of light between a multi-wavelength optical signal and a relatively thin (e.g., sub-micron) silicon optical waveguide uses a prism coupler in association with an evanescent coupling layer. A grating structure having a period less than the wavelengths of transmission is formed in the coupling region (either formed in the silicon waveguide, evanescent coupling layer, prism coupler, or any combination thereof) so as to increase the effective refractive index “seen” by the multi-wavelength optical signal in the area where the beam exiting/entering the prism coupler intercepts the waveguide surface (referred to as the “prism coupling surface”). The period and/or duty cycle of the grating can be controlled to modify the effective refractive index profile in the direction away from the coupling region so as to reduce the effective refractive index from the relatively high value useful in multi-wavelength coupling to the lower value associated with maintaining confinement of the optical signals within the surface waveguide structure, thus reducing reflections along the transition region.
摘要:
A compound of formula (I) or a pharmaceutically acceptable salt, solvate, or hydrolysable ester thereof, Wherein: R1 and R2 are independently hydrogen or C1-3 alkyl; X represents a bond, CH2 or O; R3 and R4 are independently hydrogen, C1-6 alkyl, OCH3, CF3, allyl or halogen; X1 is CH2, SO2, or CO; R5 is —C1-6 alkyl (optionally substituted by C1-6alkoxy or C1-6alkylthio), —C2-6 alkenyl, —C0-6 alkyl phenyl (wherein the phenyl is optionally substituted by one or more CF3, halogen, C1-3 alkyl, C1-3 alkoxy), —COC1-6 alkyl, SO2C1-6 alkyl; R6 is phenyl or a 6 membered heteroaryl group containing 1, 2 or 3 N atoms wherein the phenyl or heteroaryl group is optionally substituted with 1, 2 or 3 moieties selected from the group consisting of C1-6 alkyl, halogen, —OC1-6 alkyl, —SO2C1-3 alkyl, phenyl (optionally substituted by one or more groups selected from halogen, CF3, C1-3 alkyl, OC1-3 alkyl, acetyl, CN).
摘要:
A conventional CMOS fabrication technique is used to integrate the formation of passive optical devices and active electro-optic devices with standard CMOS electrical devices on a common SOI structure. The electrical devices and optical devices share the same surface SOI layer (a relatively thin, single crystal silicon layer), with various required semiconductor layers then formed over the SOI layer. In some instances, a set of process steps may be used to simultaneously form regions in both electrical and optical devices. Advantageously, the same metallization process is used to provide electrical connections to the electrical devices and the active electro-optic devices.