Abstract:
Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point, moving the first tissue contact point from a position initially distal to a second tissue contact point to a position proximal of the second contact point to form a tissue fold, and extending an anchor assembly through the tissue fold near the second tissue contact point.
Abstract:
Interlocking tissue anchor apparatus and methods are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. Anchor assemblies can be delivered via the tissue manipulation assembly into or through the tissue. The anchors can incorporate various temporary interlocking features or spacing elements between one another to ensure that an anchor is not prematurely ejected from the needle assembly. This allows the anchor assembly to be advanced distally as well as withdrawn proximally within a deployment sheath while avoiding inadvertently ejecting an anchor.
Abstract:
A surgical access device includes a single valve forming a seal with the body wall and providing an access channel into a body cavity. The valve has properties for creating a zero-seal in the absence of an instrument and an instrument seal with instruments. The valve can include a gel comprised of an elastomer and oil providing elongation greater than 1000 percent and durometer less than 5 Shore A. The single valve can be used as a hand port where the instrument comprises the arm of a surgeon. A method for making the surgical access device includes combining a gelling agent with oil, preferably in a molding process. A method for using the device includes creating an opening with the instrument. An organ can be removed from the body cavity through the single valve to create an organ seal while the organ is addressed externally of the body cavity.
Abstract:
Apparatus and methods are provided for placing and advancing a diagnostic or therapeutic instrument in a hollow body organ of a tortuous or unsupported anatomy, comprising a handle, an overtube disposed within a hydrophilic sheath, and a distal region having an atraumatic tip. The overtube may be removable from the handle, and have a longitudinal axis disposed at an angle relative to the handle. The sheath may be disposable to permit reuse of the overtube. Fail-safe tensioning mechanisms may be provided to selectively stiffen the overtube to reduce distension of the organ caused by advancement of the diagnostic or therapeutic instrument. The fail-safe tensioning mechanisms reduce the risk of reconfiguration of the overtube in the event that the tension system fails, and, in one embodiment, rigidizes the overtube without substantial proximal movement of the distal region. The distal region permits passive steering of the overtube caused by deflection of the diagnostic or therapeutic instrument, while the atraumatic tip prevents the wall of the organ from becoming caught or pinched during manipulation of the diagnostic or therapeutic instrument.
Abstract:
An access device has a distal, expandable member with a low-profile state facilitating insertion and a high-profile state facilitating operation of the device. An obturator can be used to move the expandable member between its two states. Alternatively, the device can have an outer tube and an inner tube connected to respective ends of a cylindrical expansion member, so that co-axial movement of the tubes changes the state of the member. An actuator slideable on a handle facilitates the co-axial movement of the tubes, and a resulting formation of the expandable member in a funnel configuration.
Abstract:
Methods and apparatus for securing and deploying tissue anchors are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member. A reconfigurable launch tube is also pivotably coupled to the tissue manipulation assembly, which may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly. A deployment assembly is provided for securing engaged tissue via one or more tissue anchors, the deployment assembly also being configured to disengage the anchors endoluminally or laparoscopically.
Abstract:
Apparatus for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably dispose through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
Abstract:
Apparatus and methods for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to a longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
Abstract:
An endoscopic tissue anchor deployment device includes a handle, an elongated shaft defining an internal lumen, and an end effector attached to the distal end of the elongated shaft. A tissue anchor catheter is removably inserted through the lumen of the elongated shaft, the catheter having a tissue anchor assembly that is deployable from its distal end. The handle may include a pin and track assembly that define a series of handle actuation steps corresponding to deployment steps for the deployment device end effector and the tissue anchor catheter. In some embodiments, the handle includes a catheter stop member that prevents movement of the tissue anchor catheter under certain circumstances, and a handle stop member that prevents actuation of the handle under certain circumstances.
Abstract:
Apparatus and methods for optimizing anchoring force are described herein. In securing tissue folds, over-compression of the tissue directly underlying the anchors is avoided by utilizing tissue anchors having expandable arms configured to minimize contact area between the anchor and tissue. When the anchor is in its expanded configuration, a load is applied to the anchor until it is optimally configured to accommodate a range of deflections while the anchor itself exerts a substantially constant force against the tissue. Various devices, e.g., stops, spring members, fuses, strain gauges, etc., can be used to indicate when the anchor has been deflected to a predetermined level within the optimal range. Moreover, other factors to affect the anchor characteristics include, e.g., varying the number of arms or struts of the anchor, positioning of the arms, configuration of the arms, the length of the collars, etc.