Abstract:
A self-aligned SiGe FinFET device features a relaxed channel region having a high germanium concentration. Instead of first introducing germanium into the channel and then attempting to relax the resulting strained film, a relaxed channel is formed initially to accept the germanium. In this way, a presence of germanium can be established without straining or damaging the lattice. Gate structures are patterned relative to intrinsic silicon fins, to ensure that the gates are properly aligned, prior to introducing germanium into the fin lattice structure. After aligning the gate structures, the silicon fins are segmented to elastically relax the silicon lattice. Then, germanium is introduced into the relaxed silicon lattice, to produce a SiGe channel that is substantially stress-free and also defect-free. Using the method described, concentration of germanium achieved in a structurally stable film can be increased to a level greater than 85%.
Abstract:
Method of making at least one transistor strained channel semiconducting structure, comprising steps to form a sacrificial gate block and insulating spacers arranged in contact with the lateral faces of the sacrificial gate block, form sacrificial regions in contact with the lateral faces of said semiconducting zone, said sacrificial regions being configured so as to apply a strain on said semiconducting zone, remove said sacrificial gate block between said insulating spacers, replace said sacrificial gate block by a replacement gate block between said insulating spacers, remove said sacrificial regions, and replace said sacrificial regions by replacement regions in contact with the lateral faces of said semiconducting zone, on a semiconducting zone that will form a transistor channel region.
Abstract:
Methods and structures for forming uniaxially-strained, nanoscale, semiconductor bars from a biaxially-strained semiconductor layer are described. A spatially-doubled mandrel process may be used to form a mask for patterning dense, narrow trenches through the biaxially-strained semiconductor layer. The resulting slicing of the biaxially-strained layer enhances carrier mobility and can increase device performance.
Abstract:
Methods of fabricating semiconductor structures involve the formation of fins for finFET transistors having different stress/strain states. Fins of one stress/strain state may be employed to form n-type finFETS, while fins of another stress/strain state may be employed to form p-type finFETs. The fins having different stress/strain states may be fabricated from a common layer of semiconductor material. Semiconductor structures and devices are fabricated using such methods.
Abstract:
Methods and structures for forming a localized, strained region of a substrate are described. Trenches may be formed at boundaries of a localized region of a substrate. An upper portion of sidewalls at the localized region may be covered with a covering layer, and a lower portion of the sidewalls at the localized region may not be covered. A converting material may be formed in contact with the lower portion of the localized region, and the substrate heated. The heating may introduce a chemical species from the converting material into the lower portion, which creates stress in the localized region. The methods may be used to form strained-channel finFETs.
Abstract:
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height.