Abstract:
In an embodiment, movement-data is gathered with one or more sensors (e.g., accelerometers, GPS receivers, etc.) during a driver's driving session. A score may be calculated for the driving session, and the driver's progress is evaluated by a driver-evaluation system. A driving session report or graphical user-interface (GUI) is generated with a computer processor and displayed at a display device. The displayed report or GUI includes a graphic representing the driver's progress relative to historical data.
Abstract:
Real-time feedback may be generated during a driving session from status data collected via one or more sensors. This feedback data may include various metrics related to a student's driving skills, which may be utilized to generate tagged driving events. A user may also manually enter tagged driving events. The tagged driving events may include real-time information based on the collected status data, such as acceleration, braking, cornering data, descriptions entered by the user. The location of these tagged driving events may be mapped in real time. Sensors used to collect this data may be integrated within the device displaying the feedback or located on another device, in which case the status data may be communicated to the device displaying the feedback. The displayed real-time feedback may be viewed by an instructor to assess a student's driving skills in real time and to calculate a driver feedback score.
Abstract:
In a computer-implemented method, data about potential vehicle operator impairment is retrieved. The data is generated by monitoring a vehicle operator, the environment ahead of the vehicle, and/or force in one or more directions. A number of impairment scores are generated by analyzing the data about potential vehicle operator impairment. A specific time period during which the vehicle operator tends to be most impaired is determined based on the impairment scores. Recommendations to reduce operator impairment of the vehicle operator are identified and communicated to the vehicle operator.
Abstract:
Tagged driving events may be generated during a driving session from sensor data collected via one or more sensors and/or entered by an instructor. The tagged driving events may include a description of each driving event and its associated severity or weight as it relates to a scoring process as well as a time and/or a location of the driving event. A driving session report may be generated using the tagged driving events and may include a driver feedback score that is weighted based on the severity associated with each of the tagged driving events and/or the collected data, a map of the driving session route that indicates a map location of each tagged driving event, and/or a listing of each tagged driving event. The driving session report may be displayed such that a user may select a tagged driving event to view information associated with the tagged driving event.
Abstract:
In a computer-implemented method, data about potential vehicle operator impairment is retrieved. The data is generated by monitoring a vehicle operator, the environment ahead of the vehicle, and/or force in one or more directions. For each of a plurality of trips, an impairment score is generated by analyzing the data about potential vehicle operator impairment, and determining whether the vehicle operator was impaired during the trip by comparing the impairment score to a threshold value. A specific time period during which the vehicle operator tends to be most impaired is determined based on the determinations of whether the vehicle operator was impaired. Recommendations to reduce operator impairment of the vehicle operator are identified and communicated to the vehicle operator.
Abstract:
Tagged driving events may be generated during a driving session from sensor data collected via one or more sensors and/or entered by an instructor. The tagged driving events may include a description of each driving event and its associated severity or weight as it relates to a scoring process as well as a time and/or a location of the driving event. A driving session report may be generated using the tagged driving events and may include a driver feedback score that is weighted based on the severity associated with each of the tagged driving events and/or the collected data, a map of the driving session route that indicates a map location of each tagged driving event, and/or a listing of each tagged driving event. The driving session report may be displayed such that a user may select a tagged driving event to view information associated with the tagged driving event.
Abstract:
In a computer-implemented method, data about potential vehicle operator impairment is retrieved. The data is generated by monitoring a vehicle operator with a first sensor, monitoring the environment ahead of the vehicle with a second sensor, and monitoring force in one or more directions with a third sensor. A plurality of scores is assigned. Each of the plurality of scores corresponds to a respective impairment indicator, and wherein each of the plurality of scores is based on the data about potential operator impairment. An impairment score is generated by performing a mathematical operation on the plurality of scores. It is determined whether the vehicle operator is impaired by comparing the impairment score to a threshold value. Recommendations to reduce operator impairment of the vehicle operator are identified by analyzing the data about potential vehicle operator impairment.
Abstract:
A method includes, during a driving session in which a student driver operates a vehicle, gathering driving skill data indicative of at least one of behavior of the student driver, acceleration of the vehicle, braking of the vehicle, or steering of the vehicle, and gathering comments from a driving instructor about the driving session. The method also includes generating a driving session report corresponding to the driving session. The driving session report includes at least one score based on the driving skill data, and the comments from the driving instructor about the driving session. Still further, the method includes causing the driving session report to be displayed on a display device.
Abstract:
A method includes, for each of two or more driving sessions in which a student driver operates a vehicle, gathering driving skill data indicative of at least one of behavior of the student driver, acceleration of the vehicle, braking of the vehicle, or steering of the vehicle, and generating a driving session report. The method further includes causing the driving session reports corresponding to the two or more driving sessions to be displayed to a driving instructor, and receiving comments from the driving instructor about the two or more driving sessions of the student driver. Still further, the method includes storing the driving session reports corresponding to the two or more driving sessions along with the received comments from the driving instructor.
Abstract:
Real-time feedback may be generated during a driving session from status data collected via one or more sensors. This feedback data may include various metrics related to a student's driving skills, which may be utilized to generate tagged driving events. A user may also manually enter tagged driving events. The tagged driving events may include real-time information based on the collected status data, such as acceleration, braking, cornering data, descriptions entered by the user. The location of these tagged driving events may be mapped in real time. Sensors used to collect this data may be integrated within the device displaying the feedback or located on another device, in which case the status data may be communicated to the device displaying the feedback. The displayed real-time feedback may be viewed by an instructor to assess a student's driving skills in real time and to calculate a driver feedback score.