Abstract:
A rotary chip attach process and manufacturing approach takes chips (e.g., integrated circuits (ICs)) from a wafer in a rotary process. A chip wafer with a positioning unit is placed over the top of a sprocketed wheel that picks the ICs directly from the wafer and moves them in a semi-continuous in-step motion to a web that will accept the ICs. The sprocketed wheel includes chips that are preferably the same type as used in a typical pick-and-place robotic system, with vacuum heads adapted to pierce the wafer flat membrane (if needed), grab and IC and place and IC as desired. This positioning system keeps the IC's placement in an accurate position on the web, which can be made to move continuously with a plurality of sprocketed wheel placement units in place.
Abstract:
A personal watercraft is disclosed, having a straddle-type seat disposed on a deck. The seat has a seat profile. A storage compartment is disposed rearwardly of the seat. A rear platform is pivotally connected to a rear portion of the watercraft. The rear portion has a raised portion protruding therefrom. The raised portion of the rear portion forms at least in part the storage compartment. The rear platform permits access to the storage compartment when in a raised position, and sealingly closes the storage compartment when in a lowered position. A highest point of the rear platform is disposed lower than the seat profile when the rear platform is in the lowered position.
Abstract:
A capacitor strap that is applied to a security tag coil or antenna to form and properly tune an EAS or an RFID security tag. The capacitor strap is a thin film capacitor formed of two metal foils in between which is a dielectric material having ends that are electrically coupled to different points of a security tag coil or antenna. The capacitor strap may include an RFID integrated circuit, either in series or in parallel with the capacitor, which is then applied to security tag coil at a particular location to tune the tag to a predetermined frequency.
Abstract:
A communication-ready corrugated article and method for making the corrugated article is disclosed. The corrugated article includes a linersheet (e.g., craft paper), an undulating medium (e.g., craft paper), a conductive strip (e.g., metal, aluminum, wire, coil), and a security chip (e.g., RFID chip, EAS chip, integrated circuit, chip strap, RFID tag, EAS tag). The linersheet has a first side and a second side. The undulating medium is coupled to the first side of the linersheet, the conductive strip is positioned on the first side of the linersheet between the linersheet and the undulating medium. The security chip is attached to the second side of the linersheet opposite the conductive strip and is coupled to the conductive strip through the linersheet.
Abstract:
A method for installing an RFID tag on shipping articles includes applying a strip of conductive material to the surface of the article and providing an RFID chip having a body, a first bottom conductive point, a second bottom conductive point and a nonconductive fin between the first bottom conductive point and the second bottom conductive point. The fin is received in the shipping article. The RFID chip is attached to the shipping article by inserting the chip onto the strip of conductive material on the shipping article such that the fin severs the strip into a first strip and a second strip. The first bottom conductive point is electrically attached to the first strip and the second bottom conductive point is electrically attached to the second strip.
Abstract:
A method of fabricating a tag includes the steps of applying a first patterned adhesive to the surface of the substrate and applying a first electrically conductive foil to the first patterned adhesive. A portion of the first electrically conductive foil not adhered to the first patterned adhesive is removed and a second patterned adhesive is applied to a portion of a surface area of the tag. A preformed second electrically conductive foil is applied to the second patterned adhesive to adhere the second electrically conductive foil to the surface of the substrate and portions of the first and second electrically conductive foils are electrically coupled to each other to form a tag circuit. A second patterned adhesive can be disposed between the first and second electrically conductive foils.
Abstract:
A method of making UHF antennas for security tag and antennas thereby. A web of electrically conductive material having a thickness in the range of approximately 5 to approximately 50 microns is releasably secured to a carrier web using a releasably securable adhesive substantially coextensive with the conductive web. A series of antennas of a desired shape are die-cut into the conductive web, but not into the carrier web. The portion of the conductive web not making up the antennas is in the form of scrap and is removed, thereby leaving the series of antennas releasably secured to the carrier sheet. The antennas are arranged to be removed from the carrier sheet, whereupon the releasably securable adhesive is transferred to them, so that they may be subsequently secured to other components to form a security tag.
Abstract:
A poly sheet continuously moving in a machine direction is heated to a temperature just below its glass thermal temperature to make the poly malleable. A circuit (e.g., RFID chip, EAS chip, transponder, IC) is placed on the poly sheet and embedded into the poly sheet, preferably with a heat resistant soft (e.g., rubber) roller that presses the circuit into the poly without breaking the circuit. A conductive strip or wire may be applied on or into the poly sheet to align with connection points (e.g., conductive bumps) of the circuit for conductive communication with the circuit. The conductive strip or wire is preferably cut to form gaps that are nonconductive between the cut sections of wire to avoid shorting of the circuit and/or allow the conductive strip or wire to function as an antenna for the circuit, and thus to form a chip strap or tag. The poly sheet thus provides a protective womb or shield for the circuit and wire.