摘要:
Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.
摘要:
Disclosed herein is a multifunctional catalyst system comprising a substrate; and a catalyst pair disposed upon the substrate; wherein the catalyst pair comprises a first catalyst and a second catalyst; and wherein the first catalyst initiates or facilitates the reduction of carbon dioxide to carbon monoxide while the second catalyst initiates or facilitates the conversion of carbon monoxide to an organic compound. Disclosed herein is a method comprising reducing carbon dioxide to carbon monoxide in a first reaction catalyzed by a first catalyst; and reacting carbon monoxide with hydrogen in a second reaction catalyzed by second catalyst; wherein the first catalyst and the second catalyst are disposed upon a single substrate.
摘要:
In some embodiments, the present invention is directed to methods of making structures with complex functional architectures, where such structures generally comprise at least two mesoporous regions comprising different chemical activity, and where such methods afford spatial control over the placement of such regions of differing chemical activity. In some embodiments, the present invention is also directed to the structures formed by such methods, where such structures are themselves novel.
摘要:
A method of forming a nanoscale ceramic composite generally includes modifying a polymeric ceramic precursor, mixing the modified polymeric ceramic precursor with a block copolymer to form a mixture, forming an ordered structure from the mixture, wherein the modified polymeric ceramic precursor selectively associates with a specific type of block of the block copolymer, and heating the ordered structure for a time and at a temperature effective to form the nanoscale ceramic composite.
摘要:
A porous structure and method of making the porous structure is disclosed. The porous structure includes a substrate comprising at least one pore having an internal surface. At least a first portion of the internal surface of the at least one pore has a first fluid contact angle and at least second portion of the internal surface of the at least one pore has a second fluid contact angle. The difference between the first fluid contact angle and the second fluid contact angle has an absolute value of at least about 5 degrees and the second fluid contact angle is greater than about 40 degrees.
摘要:
Multiphase ceramic nanocomposites having at least three phases are disclosed. Each of the at least three phases has an average grain size less than about 100 nm. In one embodiment, the ceramic nanocomposite is substantially free of glassy grain boundary phases. In another embodiment, the multiphase ceramic nanocomposite is thermally stable up to a temperature of at least about 1500° C. Methods of making such multiphase ceramic nanocomposites are also disclosed.
摘要:
A multiphase ceramic composite that retains nanostructural characteristics up to high temperatures. The ceramic composite comprises a mesoporous matrix and a plurality of crystalline inorganic nanoparticles, each of which having at least one dimension of less than about 100 nm, disposed throughout the mesoporous matrix. The mesoporous matrix comprises a ceramic matrix and a plurality of pores dispersed throughout the ceramic matrix and forming a mesoporous network. In one embodiment, the ceramic composite is thermally and structurally stable—i.e., it does no undergo any decomposition or melting—up to about 1000° C. Methods of making a ceramic composite and a ceramic composite article having such a mesoporous matrix are also disclosed.