摘要:
A memory device in a 3-D read and write memory includes a resistance-changing layer, and a local contact resistance in series with, and local to, the resistance-changing layer. The local contact resistance is established by a junction between a semiconductor layer and a metal layer. Further, the local contact resistance has a specified level of resistance according to a doping concentration of the semiconductor and a barrier height of the junction. A method for fabricating such a memory device is also presented.
摘要:
Forming a metal-insulator diode and carbon memory element in a single damascene process is disclosed. A trench having a bottom and a sidewall is formed in an insulator. A first diode electrode is formed in the trench during a single damascene process. A first insulating region comprising a first insulating material is formed in the trench during the single damascene process. A second insulating region comprising a second insulating material is formed in the trench during the single damascene process. A second diode electrode is formed in the trench during the single damascene process. The first insulating region and the second insulating region reside between the first diode electrode and the second diode electrode to form a metal-insulator-insulator-metal (MIIM) diode. A region of carbon is formed in the trench during the single damascene process. At least a portion of the carbon is electrically in series with the MIIM diode.
摘要:
A storage system and method for forming a storage system that uses punch-through diodes as a steering element in series with a reversible resistivity-switching element is described. The punch-through diode allows bipolar operation of a cross-point memory array. The punch-through diode may have a symmetrical non-linear current/voltage relationship. The punch-through diode has a high current at high bias for selected cells and a low leakage current at low bias for unselected cells. Therefore, it is compatible with bipolar switching in cross-point memory arrays having resistive switching elements. The punch-through diode may be a N+/P−/N+ device or a P+/N−/P+ device.
摘要翻译:描述了一种用于形成使用穿通二极管作为与可逆电阻率切换元件串联的转向元件的存储系统的存储系统和方法。 穿通二极管允许交叉点存储器阵列的双极性操作。 穿通二极管可具有对称的非线性电流/电压关系。 穿通二极管在选择的电池的高偏压下具有高电流,对于未选择的电池,在低偏压下具有低泄漏电流。 因此,它与具有电阻式开关元件的交叉点存储器阵列中的双极开关兼容。 穿通二极管可以是N + / P- / N +器件或P + / N- / P +器件。
摘要:
A storage system and method for operating the storage system that uses reversible resistance-switching elements is described. Techniques are disclosed herein for varying programming conditions to account for different resistances that memory cells have. These techniques can program memory cells in fewer attempts, which can save time and/or power. Techniques are disclosed herein for achieving a high programming bandwidth while reducing the worst case current and/or power consumption. In one embodiment, a page mapping scheme is provided that programs multiple memory cells in parallel in a way that reduces the worst case current and/or power consumption.
摘要:
A non-volatile resistance-switching memory element includes a resistance-switching element formed from a metal oxide layer having a dopant which is provided at a relatively high concentration such as 10% or greater. Further, the dopant is a cation having a relatively large ionic radius such as 70 picometers or greater, such as Magnesium, Chromium, Calcium, Scandium or Yttrium. A cubic fluorite phase lattice may be formed in the metal oxide even at room temperature so that switching power may be reduced. The memory element may be pillar-shaped, extending between first and second electrodes and being in series with a steering element such as a diode. The metal oxide layer may be deposited at the same time as the dopant. Or, using atomic layer deposition, an oxide of a first metal can be deposited, followed by an oxide of a second metal, followed by annealing to cause intermixing, in repeated cycles.
摘要:
Non-volatile storage elements having a reversible resistivity-switching element and techniques for fabricating the same are disclosed herein. The reversible resistivity-switching element may be formed by depositing an oxygen diffusion resistant material (e.g., heavily doped Si, W, WN) over the top electrode. A trap passivation material (e.g., fluorine, nitrogen, hydrogen, deuterium) may be incorporated into one or more of the bottom electrode, a metal oxide region, or the top electrode of the reversible resistivity-switching element. One embodiment includes a reversible resistivity-switching element having a bi-layer capping layer between the metal oxide and the top electrode. Fabricating the device may include depositing (un-reacted) titanium and depositing titanium oxide in situ without air break. One embodiment includes incorporating titanium into the metal oxide of the reversible resistivity-switching element. The titanium might be implanted into the metal oxide while depositing the metal oxide, or after deposition of the metal oxide.
摘要:
A storage system and method for forming a storage system that uses punch-through diodes as a steering element in series with a reversible resistivity-switching element is described. The punch-through diode allows bipolar operation of a cross-point memory array. The punch-through diode may have a symmetrical non-linear current/voltage relationship. The punch-through diode has a high current at high bias for selected cells and a low leakage current at low bias for unselected cells. Therefore, it is compatible with bipolar switching in cross-point memory arrays having resistive switching elements. The punch-through diode may be a N+/P−/N+ device or a P+/N−/P+ device.
摘要翻译:描述了一种用于形成使用穿通二极管作为与可逆电阻率切换元件串联的转向元件的存储系统的存储系统和方法。 穿通二极管允许交叉点存储器阵列的双极性操作。 穿通二极管可具有对称的非线性电流/电压关系。 穿通二极管在选择的电池的高偏压下具有高电流,对于未选择的电池,在低偏压下具有低泄漏电流。 因此,它与具有电阻式开关元件的交叉点存储器阵列中的双极开关兼容。 穿通二极管可以是N + / P- / N +器件或P + / N- / P +器件。
摘要:
Forming a metal-insulator diode and carbon memory element in a single damascene process is disclosed. A trench having a bottom and a sidewall is formed in an insulator. A first diode electrode is formed in the trench during a single damascene process. A first insulating region comprising a first insulating material is formed in the trench during the single damascene process. A second insulating region comprising a second insulating material is formed in the trench during the single damascene process. A second diode electrode is formed in the trench during the single damascene process. The first insulating region and the second insulating region reside between the first diode electrode and the second diode electrode to form a metal-insulator-insulator-metal (MIIM) diode. A region of carbon is formed in the trench during the single damascene process. At least a portion of the carbon is electrically in series with the MIIM diode.
摘要:
A metal-insulator diode is disclosed. In one aspect, the metal-insulator diode comprises a first electrode comprising a first metal, a first region comprising a first insulating material, a second region comprising a second insulating material, and a second electrode comprising a second metal. The first region and the second region reside between the first electrode and the second electrode. The second insulating material is doped with nitrogen. Note that the second insulating material may have an interface with either the first electrode or the second electrode.
摘要:
A storage system and method for operating the storage system that uses reversible resistance-switching elements is described. Techniques are disclosed herein for varying programming conditions to account for different resistances that memory cells have. These techniques can program memory cells in fewer attempts, which can save time and/or power. Techniques are disclosed herein for achieving a high programming bandwidth while reducing the worst case current and/or power consumption.