Abstract:
A multichamber pressure-increasing device is comprised of a plurality of chambers disposed in series one inside the other, wherein the innermost chamber is configured so as to place objects or samples therein to subject them to ultra-high pressures. An external hydraulic pump pumps fluid into the outermost chamber while a plurality of elemental hydraulic motor pump systems (EHMPS) are mounted in each chamber for increasing the pressure from one chamber to the next one disposed more to the interior of the device through an iterative process, each EHMPS consisting of two cylinder-piston assemblies operatively joined together in such a way that both pistons extend or retract simultaneously within their respective cylinders, the motor part driving the pump part as pressurized fluid admitted into the motor cylinder is subsequently discharged so fluid admitted into the pumping part cylinder is compressed therein and impelled at a higher pressure into the succeeding chamber.
Abstract:
A cutting element include a substrate and a diamond compact including at least two polycrystalline diamond portions separated by at least one metal carbide foil portion. The cutting element is made by placing diamond powder in a reaction container, placing a thin metal layer in the reaction container above or around the diamond powder and binder, placing additional diamond powder in the reaction container above or around the thin metal layer, and placing a pre-sintered substrate containing binder into the reaction container above all diamond powder and thin metal layer components. The assembled reaction container is put into a reactor and is subjected to a high-temperature high-pressure sintering process. The binder in the pre-sintered substrate sweeps through to sinter the first diamond portion, and then reacts with the thin metal layer to form a metal carbide, and then the binder continues to sweep through to sinter the second diamond portion.
Abstract:
A substance includes diamond particles having a maximum linear dimension of less than about 1 μm and an organic compound attached to surfaces of the diamond particles. The organic compound may include a surfactant or a polymer. A method of forming a substance includes exposing diamond particles to an organic compound, and exposing the diamond particles in the presence of the organic compound to ultrasonic energy. The diamond particles may have a maximum linear dimension of less than about 1 μm. A composition includes a liquid, a plurality of diamond nanoparticles dispersed within the liquid, and an organic compound attached to surfaces of the diamond nanoparticles. A method includes mixing a plurality of diamond particles with a solution comprising a liquid solvent and an organic compound, and exposing the mixture including the plurality of diamond nanoparticles and the solution to ultrasonic energy.
Abstract:
A method for making PDC with excellent abrasion resistance at high pressure in a single HPHT step without introducing high residual internal stress. In one aspect of the method, the diamond mass is subjected to an initial high pressure to compact the mass. The initial pressure is then lowered to a second pressure prior to the application of heat to the reaction cell. In another aspect, the diamond mass is subjected to an initial pressure to compact the mass, followed by raising the temperature to melt the sintering aid. The initial pressure is then lowered to a second pressure prior to lowering the temperature below the melting point of the sintering aid.
Abstract:
A tip for a degradation tool, the tip comprising a PCD structure (20) joined to a cemented carbide substrate (30); the PCD structure comprising a plurality of strata (24, 25) arranged so that adjacent strata have alternating compressive and tensile stress states, adjacent strata comprising different PCD grades and being directly bonded to each other by inter-growth of diamond grains; each stratum having a mean thickness of at most 500 microns; the PCD structure defining a working end including a rounded conical apex (22) having a radius of curvature of 1.3 mm to 4 mm.
Abstract:
A method for making polycrystalline diamond material comprises providing a plurality of diamond particles or grains, coating the diamond particles or grains with a binder material comprising a non-metallic catalyst material for diamond, consolidating the coated diamond particles or grains to form a green body, and subjecting the green body to a temperature and pressure at which diamond is thermodynamically stable, sintering and forming polycrystalline diamond material.
Abstract:
An abrasive compact may include an ultra-hard phase that may include ultra-hard particles having a Knoop hardness of 5000 KHN or greater, a sinter catalyst, and a reaction phase that may include a catalyst-ceramic compound having a Knoop hardness lower than that of the ultra-hard phase.
Abstract:
Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to an HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a PCD material includes a plurality of bonded diamond grains that exhibit a substantially unimodal diamond grain size distribution characterized, at least in part, by a parameter θ that is less than about 1.0. θ = x 6 · σ , where x is the average grain size of the substantially unimodal diamond grain size distribution, and σ is the standard deviation of the substantially unimodal diamond grain size distribution.
Abstract translation:实施方案涉及通过使表现出宽金刚石粒度分布的混合物经受HPHT方法,所形成的PCD材料和包括包含这种PCD材料的多晶金刚石台的PDC来制造PCD材料的方法。 在一个实施方案中,PCD材料包括多个结合的金刚石晶粒,其表现出基本上单峰金刚石晶粒尺寸分布,其至少部分地由参数和特征表征; 小于约1.0。 &thetas; = x 6·&sgr ,其中x是基本上单峰金刚石晶粒尺寸分布的平均晶粒尺寸, 是基本上单峰金刚石晶粒尺寸分布的标准偏差。
Abstract:
The present invention relates to polycrystalline ultra hard material cutting elements, and more particularly to a method of forming a polycrystalline ultra hard material cutting element with a thicker ultra hard layer than cutting elements formed by prior art methods. In an exemplary embodiment, such a method includes pre-sintering the ultra hard material powder to form an ultra hard material layer that is partially or fully densified prior to HPHT sintering, so that the ultra hard layer is pre-shrunk. This pre-sintering in an exemplary embodiment is achieved by means of a spark plasma process, or in another exemplary embodiment by a microwave sintering process.
Abstract:
A polycrystalline superhard construction comprises a body of polycrystalline superhard material, and a substrate of hard material bonded thereto along an interface. The body of polycrystalline superhard material comprises a first region abutting the substrate along the interface and a second region bonded to the first region. The second region defines a rake face, a cutting edge, a chamfer and at least a part of a flank face, the cutting edge being defined by an edge of the flank face joined to the chamfer, the chamfer extending between the cutting edge and the rake face. The height of the chamfer in a plane parallel to the plane through which the longitudinal axis of the polycrystalline superhard construction extends is less than the thickness of the second region. The first region comprises a material having coarser grains than the second region. There is also disclosed a method of making the same.