Abstract:
An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.
Abstract:
A water treatment tank for treating waste water using an electrochemical treatment process. The electrochemical process removes both suspended and dissolved solids in the water and allows the treated water to be removed from the tank for reuse or discharge. The tank includes a tank housing with first and second waste water receiving compartments. The two compartments are identical and are used alternately when treating the waste water. A waste water inlet line is attached to the top of the first compartment for filling the compartment with waste water. A side of the first compartment includes an annular opening for receiving an electrode assembly with a plurality of electrodes extending inside the compartment for treating the waste water electrochemically. The electrodes are attached to the power supply via electrode cables with the polarity of a current cycle reversed periodically depending on the types of water contaminates being treated. When the cycle is reversed, the contaminates gather on the electrodes typically fall to the bottom of the tank as sludge and are drained into a removable filter basket. The compartments also include an airline connected to an air spray manifold. The air spray manifold is used for circulating air bubbles upwardly in and around the electrodes for providing a scrubbing effect and carrying away contaminates that might gather on the electrodes.
Abstract:
A device for producing ion water comprises an electrolytic cell; two partition walls disposed such that the electrolytic cell is partitioned into three electrolytic chambers, having an ion exchange membrane; an anode provided in an intermediate electrolytic chamber of the electrolytic cell such that the anode is attached fixedly or movably in the direction of the electrolytic chambers located at both sides of the electrolytic cell; and a cathode provided in each of the electrolytic chambers located on both sides of the electrolytic cell such that the cathode is attached fixedly or movably in a direction such that the distance between the anode and cathode changes, each cathode being fed half the amount of electric current which is delivered to the anode, so that the desired pH of three kinds of ion water can be achieved by controlling the quantity of hydrogen ions generated as determined by the amount of electricity delivered.
Abstract:
An apparatus and method for electrocoriolysis, the separation of ionic substances from liquids in the electrodynamic mode. The method maximizes centrifugal forces on a fluid contained in a chamber having oppositely polarized electrodes. A feed fluid is fed into the chamber. Spacing of the electrodes can be minimized for enhancement of the process. A constant voltage can be applied. Centrifugal force and the electric potential across the chamber create enhanced separation. Concentrated solution can be removed from a location in the chamber and depleted solution from another location.
Abstract:
An electrolytic cell capable of controlling the pH and the ORP independently to each other, comprising an electrolytic chamber (113) to which subject water to be electrolyzed are supplied, membranes (115, 115) provided on the both side walls of the electrolytic chamber, a pair of electrode plates (116, 117) respectively provided inside the electrolyzed chamber and outside the electrolytic chamber sandwiching the membrane therebetween, and wherein the electrode plate (116) is provided outside the electrolytic chamber in contact with the membrane (115) or leaving a slight space.
Abstract:
An apparatus (200) for the treatment of effluent including a chamber (210) having an inlet (212) and an outlet (252), a plurality of plate-type electrodes (211) extending vertically in the chamber (210), and an electrical supply connected to the plurality of plate-type electrodes (211). The plurality of plate-type electrodes (211) define a plurality of channels extending within the chamber (210). Each of the plurality of channels occurs between adjacent electrodes (211). The plurality of electrodes (211) are positioned between the inlet (212) and the outlet (252). The electrical supply delivers electricity of a first polarity to a first set of a plurality of electrodes (211). The electrical supply delivers electricity of an opposite polarity to the second set of electrodes (211).
Abstract:
A water treatment device using a known electrolytic principle includes a pair of inner and outer concentric truncated cones serving as electrodes and providing an annular flow space for generally axial flow of liquid to be decomposed or dissociated. The flow in a preferred embodiment is from the smaller-diameter end of the cone-shaped flow space to the larger-diameter end, thus decreasing pressure; however, in certain electrolytic reactions increasing pressure is an advantage, thus the device has bidirectional flow capability. The shape of all interior components along the flow path is such as to provide smooth transitions to avoid turbulence or cavitation in the liquid flow. The two cones can be shifted relatively along an axis line so as to change the width of the annular flow space. The two electrode-cones are advantageously formed of coated titanium plates. Important features of the device include the manner of mounting the inner cone/electrode within the outer cone, which provides for sliding, relative axial movement of the two cones to adjust the size of the flow path, and this may be dynamically, during use. Features may be included to maximize the surface area of the electrodes exposed to the liquid.
Abstract:
A method and apparatus is provided for inhibiting scaling in an electrodeionization system and, more particularly, for increasing tolerance to hardness in the feed water to an electrodeionization unit by inhibiting precipitation of scale-forming metallic cations contained in the feed water and thereby increasing efficiencies of the electrodeionization system. Water to be purified is passed through an electrodeionization unit in which the flow in the diluting compartment is countercurrent to the flow in the concentrating compartment. This is to impede the migration of scale-forming metallic cations from the diluting compartment, through the cation exchange membrane, into the concentrating compartment and towards the concentrating compartment side of the anion exchange membrane, thereby preventing scale formation on the anion exchange membrane. The electrodeionization unit may be further modified by dividing the concentrating compartments into first and second compartments by a porous diaphragm or ion-conducting membrane. The porous diaphragm or ion-conducting membrane effectively eliminates convective transport of scale-forming metallic cations from the cation exchange membrane side of the concentrating compartment to the anion exchange membrane side of the concentrating compartment, thereby inhibiting scale formation on the anion exchange membrane.
Abstract:
A molecularly implanted stimulated emitter (MISE) device in which high levels of ultraviolet radiation are applied to contamination in a contained fluid environment. The MISE device is primarily for use in a system for reducing biological organisms, such as virions and spores, in a liquid effluent to non-viable organic molecules, but it also can be used to drive chemical reactions, especially those to reduce the toxicity of toxic materials. The MISE device includes at least one ultraviolet source, such as a mercury vapor UV lamp, and secondary ultraviolet sources that absorb the peak UV frequencies of the lamp and emitting UV at other frequencies to fill in areas of the spectrum that are only weakly produced by the lamp. In this way, ultraviolet radiation is supplied at frequencies that are readily absorbed and operate to disassociate any viable DNA and RNA strands in the fluid, to thereby cause "death". Varying magnetic fields, which are rapidly switched in polarity acting on the electric fields and then vibrated are also applied to the contamination to increase its susceptibility to UV and to increase the efficiency of the UV lamp.
Abstract:
In an electrochemical cell arrangement for the deionization of aqueous solutions by ion exchange including cathode and anode chambers having electrodes disposed therein, a brine chamber is disposed between, and directly adjacent to, the cathode and anode chambers which are filled with anion and cation exchanger materials such that the electrodes are directly in contact therewith and means are provided for conducting the aqueous solution to be treated through the cathode and anode chambers and means for passing brine through the brine chamber to be charged therein by the ions removed from the aqueous solution in the cathode and anode chambers.