Abstract:
Hydrogen sulfide (H2S) and/or mercaptan scavengers are chemicals that remove H2S and/or mercaptans from gas, oil and water. Water-based formulations may be made and used employing scavenging compounds having the formulae: wherein each R1, R2, R3, and R4 are the same or different and are selected from the group consisting of hydrogen, an alkyl, an alkenyl, an aryl, an acyl, a halogen, a hydroxyl, a nitro, an alkyl ester, an aryl ester, an alkyl ether, an aryl ether, a hydroxymethyl, an anhydride group, an amino, and a sulfide. In one non-limiting embodiment the compounds (A) and (B) do not contain nitrogen atoms. Water-based formulations, such as those using a protic solvent with the above compounds, work well as H2S scavengers.
Abstract:
The liquid hydrocarbon stream including COS is introduced via line 1 into membrane contactor CM to be placed in contact, through membrane M, with the aqueous alkanolamine solution arriving via line 3. The COS contained in the hydrocarbon stream is absorbed by the aqueous alkanolamine solution. The liquid hydrocarbons from which the COS has been removed are evacuated from CM via line 2. The aqueous solution containing COS is sent via line 4 to zone R to be regenerated. The compounds released during regeneration, particularly COS and COS-derived products, are evacuated from zone R via line 5. The regenerated aqueous alkanolamine solution is recycled via line 3 into membrane contactor CM.
Abstract:
A process for the preparation of at least one ARN acid or salt thereof comprising: (I) allowing at least one ARN acid salt to form during the production of crude oil in the presence of water; (II) removing at least 5 wt % of the formed at least one ARN acid salt, e.g. from the oil water interface; and optionally (III) converting said salt into an acid.
Abstract:
This invention relates to the desulfurization of a hydrocarbon feedstock by contacting said feedstock with an aqueous metal hydroxide solution, thus resulting in a desulfurized feedstock and an aqueous metal sulfide stream. In the present invention, the aqueous metal sulfide stream is split into at least three fractions and each fraction is passed to a different electrochemical cell, connected in series to regenerate the metal hydroxide required in the desulfurization process and recover sulfur, metal hydroxide, and hydrogen. In a preferred embodiment, at least a portion of the metal hydroxide that is produced in the electrochemical metal hydroxide regeneration process of the present invention is recycled for use in the process for desulfurizing the sulfur-containing hydrocarbon feedstock.
Abstract:
A method for mitigating fouling in a wash unit used in a hydrocarbon cracking process wherein the fouling is due to the presence of polymers and deposits thereof formed by condensation of carbonyl compounds contained within a feed stream of the wash unit. In one embodiment, the invention provides a method of mitigating fouling in a wash unit by introducing into the feed stream an effective amount of an additive including: an inorganic salt of dithionite; and an epsilon caprolactam or a 6-amino caproic acid derivable therefrom. The additive scavenges the carbonyl compounds contained within the feed stream and dissolves deposits of the polymers to thereby mitigate fouling in the wash unit.
Abstract:
Hydrogen sulfide and mercaptans in hydrocarbons, gas mixtures of hydrocarbons and the like may be scavenged therefrom by being brought into intimate contact with a mercaptan scavenger formulation of quaternary ammonium alkoxide or hydroxide in the presence of a high oxidative state metal such as cobalt, iron, chromium and/or nickel. The high oxidative state metal, being an oxidizer, acts as a catalyst when combined with the quaternary ethoxide or hydroxide for improved mercaptan scavenging performance.
Abstract:
Described is an apparatus and process for extracting sulfur compounds from a hydrocarbon stream. A prewash section for converting hydrogen sulfide to sodium sulfide by reaction with an alkali such as caustic communicates with an extractor section disposed directly above the prewash section for converting mercaptans to mercaptides by reaction with alkali. Hydrocarbon product exits the extractor section through a coalescer that prevents alkali from exiting with the hydrocarbon product stream.
Abstract:
A method for reducing the level of elemental sulfur from sulfur-containing hydrocarbon streams as well as reducing the level of total sulfur in such streams. Preferred hydrocarbon streams include fuel streams such as naphtha streams that are transported through a pipeline. The sulfur-containing hydrocarbon stream is contacted with a mixture of water, a caustic, a surfactant, at least one metal sulfide, and optionally an aromatic mercaptan. This results in an aqueous phase and a hydrocarbon phase containing reduced levels of both elemental sulfur and total sulfur.
Abstract:
A method for mitigating fouling in a wash unit used in a hydrocarbon cracking process wherein the fouling is due to the presence of polymers and deposits thereof formed by condensation of carbonyl compounds contained within a feed stream of the wash unit. In one embodiment, the invention provides a method of mitigating fouling in a wash unit by introducing into the feed stream an effective amount of an additive including: an inorganic salt of dithionite; and an epsilon caprolactam or a 6-amino caproic acid derivable therefrom. The additive scavenges the carbonyl compounds contained within the feed stream and dissolves deposits of the polymers to thereby mitigate fouling in the wash unit.
Abstract:
A vertical extending liquid/liquid contacting column is disclosed, which column will, when in use, contain a dispersed and a continuous liquid phase, the column having a first liquid feed inlet in the top, a first liquid outlet in the top, a second liquid feed inlet in the bottom, a second liquid outlet in the bottom and a plurality of internal trays axially spaced from each other in the column, each tray provided with a plurality of perforations for the passage of the dispersed phase and more than one downcomer or upcomer for the transport of the continuous phase, wherein the downcomer or upcomer extends respectively below or above the tray and wherein the walls of the downcomer or upcomer are inclined towards each other in the flow direction of the continuous phase. A method of use within the column is also disclosed.