摘要:
A process for increasing the yields of hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit.The process includes the ability to convert components from the cracking stream to the reforming stream.
摘要:
Renewable fuels are produced in commercial quantities and with enhanced efficiency by integrating a bio-oil production system with a conventional petroleum refinery so that the bio-oil is co-processed with a petroleum-derived stream in the refinery. The techniques used to integrate the bio-oil production system and conventional petroleum refineries are selected based on the quality of the bio-oil and the desired product slate from the refinery.
摘要:
Systems and methods are provided for slurry hydroconversion of a heavy oil feed, such as an atmospheric or vacuum resid. The systems and methods allow for slurry hydroconversion using catalysts with enhanced activity and/or catalysts that can be recycled as a side product from a complementary refinery process.
摘要:
A process for increasing the yields of light olefins and the yields of aromatics from a hydrocarbon stream is presented. The process includes a first separation to direct the light components that are not reformable to a cracking unit, with the remainder passed to a second separation unit. The second separation unit extracts normal components from the hydrocarbon stream to pass to the cracking unit. The resulting hydrocarbon stream with reduced light ends and reduced normals is passed to a reforming unit.
摘要:
A process for producing light olefins and aromatics, which comprises reacting a feedstock by contacting with a catalytic cracking catalyst in at least two reaction zones, wherein the reaction temperature of at least one reaction zone among the reaction zones downstream of the first reaction zone is higher than that of the first reaction zone and its weight hourly space velocity is lower than that of the first reaction zone, separating the spent catalyst from the reaction product vapor, regenerating the separated spent catalyst and returning the regenerated catalyst to the reactor, and separating the reaction product vapor to obtain the desired products, light olefins and aromatics. This process produces maximum light olefins such as propylene, ethylene, etc from heavy feedstocks, wherein the yield of propylene exceeds 20% by weight, and produces aromatics such as toluene, xylene, etc at the same time.
摘要:
Embodiments of methods for co-production of linear alkylbenzene and biofuel from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. A first portion of the paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product. A second portion of the paraffins is processed to form biofuel.
摘要:
Embodiments of methods for co-production of linear alkylbenzene and biofuel from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. A first portion of the paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product. A second portion of the paraffins is processed to form biofuel.
摘要:
The present invention relates to a method for treating a feed corresponding to a pyrolysis gasoline, comprising: a) at least one stage of selective hydrogenation of the feed, referred to as HD1, b) fractionating in one or more distillation columns the effluent from stage a) in order to produce at least one light C5 cut, an intermediate C6 or C6-C7 or C6-C8 cut intended for aromatics production, a heavy C7+ or C8+ or C9+ cut intended for gasoline production, c) at least one stage of hydrodesulfurization and deep hydrogenation of the intermediate cut, referred to as HD2, d) at least one stage of alkylation of the heavy C7+, C8+ or C9+ cut consisting of a treatment on an acid catalyst allowing weighting of the sulfur compounds, e) at least one stage of distillation of the effluent from stage d), intended to produce a light fraction that can be directly used as a low-sulfur gasoline base, and a heavy C11+ or C12+ fraction rich in sulfur compounds, used as middle distillate or fuel oil.
摘要:
A process for producing a blended fuel from a paraffin rich component and a cyclic rich component, where each of the components are generated from a renewable feedstock, is presented. The paraffin rich component is generated from a first renewable feedstock comprising at least one component selected from the group consisting of glycerides, free fatty acids, biomass, lignocellulose, free sugars, and combinations thereof. The cyclic rich component is generated from a second renewable feedstock comprising at least one component selected from the group consisting of glycerides, free fatty acids, free fatty alkyl esters, biomass, lignocellulose, free sugars, and combinations thereof. The blended fuel may a gasoline boiling point range blended fuel, a diesel boiling point range blended fuel, an aviation boiling point range blended fuel, any combination thereof, or any mixture thereof.
摘要:
The present invention relates to a method for treating a feed corresponding to a pyrolysis gasoline, comprising: a) at least one stage of selective hydrogenation of the feed, referred to as HD1, b) fractionating in one or more distillation columns the effluent from stage a) in order to produce at least one light C5 cut, an intermediate C6 or C6-C7 or C6-C8 cut intended for aromatics production, a heavy C7+ or C8+ or C9+ cut intended for gasoline production, c) at least one stage of hydrodesulfurization and deep hydrogenation of the intermediate cut, referred to as HD2, d) at least one stage of alkylation of the heavy C7+, C8+ or C9+ cut consisting of a treatment on an acid catalyst allowing weighting of the sulfur compounds, e) at least one stage of distillation of the effluent from stage d), intended to produce a light fraction that can be directly used as a low-sulfur gasoline base, and a heavy C11+ or C12+ fraction rich in sulfur compounds, used as middle distillate or fuel oil.