Abstract:
A process to prepare methanol and/or dimethylether from a solid carbonaceous feedstock comprising the steps of (a) feeding an oxygen-comprising gas and the carbonaceous feedstock to a burner firing into a reactor vessel, (b) performing a partial oxidation of the carbonaceous feedstock in said burner to obtain a stream of hot synthesis gas and a liquid slag whereby both the hot synthesis gas and the liquid slag flow downwardly relative to the burner, (c) cooling the hot synthesis gas by direct contact with a liquid water-containing cooling medium, (d) performing a water shift reaction on at least part of the synthesis gas, to obtain a synthesis gas effluent, (e) performing an oxygenate synthesis using the synthesis gas effluent of step (d), to obtain a methanol and/or dimethylether containing oxygenate effluent and a first liquid water-rich by-product, wherein at least part of the first liquid water-rich by-product is used in step (c), forming at least part of the liquid water-containing cooling medium.
Abstract:
A system for gasifying solid matter uses multiple stages to produce low-tar combustible gas includes a first reactor having a fluidized bed to produce hydrogen containing gas, pyrolysis vapors, tars, and char particles at temperature less than the exit of the second reactor and a higher temperature partial oxidation combustor zones. A second reactor includes a higher temperature partial oxidation zone to activate hydrogen and cause cracking of aromatic ring compounds, a co-flow moving granular bed with a char gasification stage to catalyze tar reduction, and control char residence time, and a media screen comprising a parallel wire screen substantially vertically oriented supporting granular media.
Abstract:
Methods and systems for a gasifier having a partial moderator bypass are provided. The gasifier includes a partial oxidation reactor including an inlet and an outlet and a primary reaction zone extending therebetween, the partial oxidation reactor configured to direct a flow of products of partial oxidation including fuel gases, gaseous byproducts of partial oxidation, and unburned carbon, and a secondary reaction chamber coupled in flow communication with the partial oxidation reactor, the secondary reaction chamber is configured to mix a flow of moderator with the flow of gaseous byproducts of partial oxidation and unburned carbon such that a concentration of fuel gases is increased.
Abstract:
The present invention relates to an improved gasifier reactor design. In particular, the present invention relates to improved design of gasifier reactor faceplates, gasifier reactor walls, gasifier reactor cooling tubes, and gasifier reactor walls with integrated cooling channels. The present invention utilizes aluminum nitride and/or aluminum nitride/metal composite materials which promote many benefits to the present design herein, including improved corrosion and erosion resistively as compared to high alloy metal materials.
Abstract:
Disclosed is a system and method for gasification. The method includes partially oxidizing a concentrated lignin-containing liquor to form a product gas and a particulate, separating the product gas from the particulate, and contacting a lignin-containing liquor feed with the separated product gas. The contacting forms the concentrated lignin-containing liquor. The concentrated lignin-containing liquor includes dry solids content of less than about 65% and a sulfur content of less than about 2%.
Abstract:
A method for assembling a seal assembly is provided. The method includes coupling a first ring within a vessel, coupling a second ring within the vessel, and coupling a first seal layer between the first ring and the second ring such that the first seal layer contacts at least the first ring.
Abstract:
A burner comprises a body, a nozzle, and at least one attachment element for removably attaching the nozzle to the body. The body defines an oxidant inlet, a feedstock inlet, a body outlet, and one or more passages for conveying the oxidant from the oxidant inlet to the body outlet and for conveying the gasification feedstock from the feedstock inlet to the body outlet. The nozzle defines a nozzle inlet and a nozzle outlet, wherein the nozzle inlet is configured to receive the oxidant and the gasification feedstock from the body outlet and the nozzle outlet is configured to discharge the oxidant and the gasification feedstock into the reaction chamber. The at least one attachment element removably attaches the nozzle to the body such that the nozzle inlet is in fluid flow communication with the body outlet when the nozzle is attached to the body.
Abstract:
A system for converting fuel is provided and includes a first reactor comprising a plurality of ceramic composite particles, the ceramic composite particles comprising at least one metal oxide disposed on a support, wherein the first reactor is configured to reduce the at least one metal oxide with a fuel to produce a reduced metal or a reduced metal oxide; a second reactor configured to oxidize at least a portion of the reduced metal or reduced metal oxide from the said first reactor to produce a metal oxide intermediate; a source of air; and a third reactor communicating with said source of air and configured to regenerate the at least one metal oxide from the remaining portion of the solids discharged from the said first reactor and the solids discharged from the said second reactor by oxidizing the metal oxide intermediate.
Abstract:
A gasification quench chamber dip tube component is disclosed. The dip tube includes an elongate hollow element that has a first intake end and a second discharge end that is located distally opposite the intake end. The second discharge end includes either a plurality of elongate openings that are displaced circumferentially around the hollow element or a plurality of elongate elements displaced circumferentially around the hollow element thereby defining a plurality of elongate spaces therebetween that extend axially from the second discharge end. A quench chamber that employs the dip tube is also disclosed.
Abstract:
The present invention provides improved methods and apparatus for producing syngas from any carbon-containing feed material. In one aspect, a multi-zone reformer system is provided. A first reaction zone can reduce the presence of refractory tars, while a second reaction zone in communication with the first reaction zone can steam-reform methane and other components from the first reaction zone, to generate high-quality syngas suitable for conversion to liquid fuels, such as ethanol. Other embodiments employ a plurality of reaction zones for added system functionality.