Abstract:
An internal combustion engine provides a piston and a cylinder within which either the piston or the cylinder, or both, are free to move and using constraining motion, either the piston or the cylinder reciprocates. A shaft takeoff integral with either the piston or the cylinder experiences rotational motion. The motion is constrained by using laterally extending tits of either the piston or the cylinder to move in curilinear grooves of the other or of a housing encompassing the cylinder.
Abstract:
In a preferred embodiment, a fluid-operated cylinder to provide both linear and rotary motion to tooling, including: a cylindrical, rotatable member for attachment to rotatable means; a circular piston disposed in the cylindrical, rotatable member for back and forth axial motion in a cavity defined therein and rotatable by rotation of the cylindrical, rotatable member; a first port defined through the cylindrical rotatable member to introduce pressurized fluid into the cavity on a first side of the circular piston such as to cause the circular piston to move in a first direction; and a piston shaft fixedly attached to the circular piston and fixedly attachable to the tooling; whereby: when the rotatable member is rotated, rotary motion will be transmitted to the tooling by the piston shaft, and when the pressurized fluid is introduced into the cavity on the first side of the circular piston, the piston shaft will cause the tooling to move in the first direction
Abstract:
An oscillating and reciprocating piston engine having a piston oscillating and reciprocating within a cylinder, a drive shaft housing attached to the cylinder, and a drive shaft turning within the drive shaft housing. The drive shaft is rotatably, slidably, and swivelably attached to the piston by means of a drive finger slidably attached to a ball in socket. The cylinder has intake, lower transfer, upper transfer, and exhaust ports which are opened and closed by a piston intake aperture, a piston transfer aperture, a piston transfer cutout, and a piston exhaust cutout, respectively. The piston both reciprocates and rotates relative to the cylinder. Steps in the transfer and exhaust cutouts, and lobes in the intake and transfer apertures, define the points at which the intake, lower transfer, upper transfer, and exhaust ports open and close.
Abstract:
A rotary internal combustion engine of the type having pistons mounted for reciprocatory movement in respective cylinders which are arranged in equally-spaced relationship around a longitudinal axis of rotation, said axis being the axis of rotation of an output shaft passing rotatably and sealably through apertures of respective first and second end plates of a housing within which the pistons and cylinders move as part of a rotatable rotor assembly secured to said output shaft, while the pistons are simultaneously movable reciprocably in the cylinders, cam follower means being associated with each piston and adapted to coact with undulating cam track means around the housing. Cyclical combustion of fuel in the cylinders imparts reciprocation to the pistons with resultant thrust against the cam track means so as to cause rotation of the rotor assembly and output shaft. The pistons include two sets thereof each having at least two pistons, the pistons of each set being at opposite sides of the axis of rotation of the rotor assembly and output shaft and are interconnected by piston-connection means to that the pistons of each set move in unison, the parts being so made and arranged that the piston cam follower means coact with the cam track means in a manner ensuring that movement of either set of pistons in their cylinders is in the direction opposite to the direction of movement of the other set of pistons.
Abstract:
A driving mechanism transforms continuous longitudinal reciprocation of a piston in a chamber into unidirectional rotation. The mechanism utilizes a closed wave-shaped groove defined in either the cylinder or the chamber and adapted to receive guiding members projecting from the other of the piston and the chamber. When the piston is forced to move longitudinally in either direction, the groove slides over the guiding members to force rotation. The apices of the wave-shaped groove are either contoured or provided with a gating structure to assure that the guide members do not backtrack but instead move in one direction through the groove.
Abstract:
A bi-directional power tool for driving fasteners and for drilling purposes. The power tool comprises a rotary piston driving mechanism and a linear sliding member that transform a longitudinal motion of a piston in a cylinder to a rotation movement of a working head. The power tool includes a driving unit that comprises a pressure generator and a controller that controls the operation of the tool. Alternatively the power tool can be operated manually.
Abstract:
A free-piston Stirling machine has a piston which can reciprocate and also rotate within a cylinder and which is supported and centered in the cylinder by a grooved dynamic bearing, the piston having two end faces which are acted upon during operation by different fluid pressures. The piston includes at least one sealing part having a circular-cylindrical smooth sealing surfaces and at least one bearing part which is provided in its peripheral surface with a groove pattern. The length of the sealing surface and the size of the gap between the sealing surface and the cylinder wall are selected such that the pressure difference across the bearing surface is reduced so that the piston remains free of radial dynamic instability during operation.
Abstract:
An external combustion engine including a rotary motor providing the means for compressing air and expanding combusted gases, and an externally located combustion member in which fuel is burned. The combustion member comprises a sleeve and a free piston reciprocating therein, thereby forming combustion chambers between its two ends and the end closures of the sleeve, as it reaches the end of its stroke. The back and forth motion of the piston is independent of the rotation of the motor as these two components are not mechanically connected, having only ducting connections therebetween. The combustion member air admission, combusted gas exhaust, the fuel injection and the ignition are all timely controlled and activated as a result of the free piston motion and location in the sleeve. The fuel/air ratio is continuously monitored so as to prevent high combustion temperatures. During its reciprocating motion the piston is guided so that its axial displacement causes a concomitant oscillating rotational movement such that the resulting piston motion may be used to operate the combustion member without the use of either inlet or outlet valves. The piston is also supported during this motion by pressurized air cushions formed in association with a longitudinally oriented central hollow shaft extending between the sleeve end closures. Solid contacts between the piston and the sleeve and/or shaft are thus prevented while the engine operates, eliminating causes of wear and extraneous heat production, and thus the need of lubrication.
Abstract:
A free piston combustion chamber coupled to air compression and gas expansion chambers are combined with a rotary motor. The rotary motor shaft drives the air compressor, receives power from the expanding gases in the expansion chamber and provides residual torque and power for external use. Two combustion chambers located at each end of the free piston receive compressed air and fuel for combustion outside of the rotary motor assembly. The motion of the free piston between the two combustion chambers is independent of the motor rotary motion. The air admission inside the combustion chambers, the fuel injection and the combustion initiation process are all controlled and timed by the free piston movement back and forth. A heat exchanger is located between the combustion-chamber/free-piston assembly and the rotary motor. The compressed air exiting from the compression chamber is heated by the gases exiting from the combustion chambers, before they are admitted into the expansion chamber of the rotary motor. The heat exchanger also performs the function of a pressurized pressure vessel or reservoir to smooth out pressure surges in the compressed air or gases entering or leaving the combustion chambers. The power output of the rotary motor is determined by the control of the amount of air or of the amount of fuel admitted in the combustion chambers. Air and fuel admissions can also be controlled simultaneously in a programmed manner. The two combustion chambers can also be formed alternatively by two oscillating free pistons guided inside a quasi torodoidally shaped containing structure.
Abstract:
A free-piston combustion member comprising air compression and gas expansion chambers is combined with a rotary motor. The rotary motor shaft drives an air compressor, receives power from the gases expanding in an expansion chamber and provides residual torque and power for external use. Two combustion chambers located at each end of the free piston receive compressed air and fuel for combustion outside of the rotary motor assembly. The motion of the free piston between the two combustion chambers is independent of the motor rotary motion. The air admission inside the combustion chambers, the fuel injection and the combustion initiation process are all controlled and timed by the free piston movement back and forth. A heat exchanger is located between the combustion-chamber/free-piston assembly and the rotary motor. It also serves as storage tank for the compressed air before its admission in the combustion chambers in order to smooth out pressure surges in the compressed air entering the combustion chambers. The power output of the rotary motor is determined by the adjustment of the amounts of air and fuel admitted in the combustion chambers. Air and fuel admissions are controlled simultaneously in a programmed manner. The results are a slower, more efficient combustion process and the concomitant possible use of inexpensive fuels, and the emission of a lesser amount of pollutants in the exhaust gas.