Abstract:
The radiometer disclosed herein is battery operated and employs null balance electronics to obtain high precision in a hand-held instrument. A beam splitting optical system combines an image of the target with an image of an illuminated visual meter registering the temperature measured by the instrument, thereby permitting a target to be readily scanned for temperature variations.
Abstract:
In a gas detection device and a gas detection method of the present invention, detection target gas is detected on the basis of reflected light of detection light (sensing light) frequency-modulated with respect to a center frequency and a distance to an object that generates the reflected light is measured. In the gas detection, an output signal of a light reception unit for receiving the reflected light is subjected to phase-sensitive detection. A synchronous detection timing of this phase-sensitive detection is adjusted on the basis of the measured distance to the object.
Abstract:
Apparatus and methods for providing an improved Fabry-Perot interferometer (FPI)-based spectrometer are disclosed herein. The improved FPI-based spectrometer may comprise one or more of a variety of improvements to allow improved sensitivity while retaining high spectral resolution, to limit the susceptibility to stray light, and to limit the degradation in performance due to temporal instabilities in the light source.
Abstract:
An electronic device includes one or more light sources for emitting light toward a body part of a user and one or more optical sensors for capturing light samples while each light source is turned on and for capturing dark samples while the light source(s) are turned off. A signal produced by the one or more optical sensors is filtered and demodulated produce multiple demodulated signals each associated with a light source. Each signal associated with the light source(s) is analyzed to estimate or determine a physiological parameter of the user.
Abstract:
An open scattered light smoke detector for detecting smoke may include a light transmitter for emitting light, a light receiver spectrally matched to the light transmitter, and a control unit configured to repeatedly actuate the light transmitter, with a pulsed signal sequence, to emit corresponding light pulses, evaluate temporally a signal sequence received by the light receiver, and output a fire alarm if a received signal strength exceeds a minimum value for the smoke concentration. The control unit may be configured to switch the detector from a normal operating mode into a service mode if a phase angle between an emitted and received signal sequence, as determined on the detector side, increases by a minimum angular value which, in terms of the travel time, corresponds technically to an increase in the optical path length from the light transmitter to the light receiver of more than some predefined distance.
Abstract:
A light radiating portion radiates light with wavelength λ1 having predetermined absorptivity for an object and light with wavelength λ2 having smaller absorptivity for the object than the wavelength λ1, to a target, so as to scan in 2-dimensional directions. A light receiving portion receives scattered lights reflected by the target based on light with wavelength λ1 and light with wavelength λ2. A measuring portion generates information used for detection of the object at the target, based on difference between the two scattered lights with wavelength λ1 and wavelength λ2 received by the light receiving portion. An output portion outputs whether or not the object is present at the target, by 2-dimensional area information, based on scanning by the light radiating portion and information generated by the measuring portion.
Abstract:
An optical detecting module includes a housing, a light emitting component, an optical detecting component and an optical signal collecting component. The light emitting component is disposed inside the housing. The optical detecting component is disposed inside the housing to receive an optical detecting signal generated by the light emitting component. The optical signal collecting component is utilized to hold the light emitting component for signal collection. The optical signal collecting component includes an output portion, a bottom portion and at least one lateral portion. The light emitting component is disposed on the bottom portion, and an optical positive signal of the optical detecting signal is projected out of the housing through the output portion. The lateral portion is bent from the bottom portion to reflect an optical lateral signal of the optical detecting signal, and the optical lateral signal is projected out of the housing through the output portion.
Abstract:
A method of an optical detecting device for synchronizing an exposure timing sequence of an image detector with a light emitting timing sequence of a reference light source is disclosed. The method includes capturing a continued image set according to a predetermined period, analyzing intensity variation of the continued image set, and adjusting the exposure timing sequence of an image detector according to the intensity variation, so as to synchronize the exposure timing sequence of the image detector with the light emitting timing sequence of the reference light source.
Abstract:
A gas analyzer includes: a first signal processing section for synchronously detecting a light detection signal at a frequency being an integral multiple of a modulation frequency fa of a laser light, to detect a harmonic signal intensity Signal(ν) by a harmonic synchronous detection method; a second signal processing section for capturing a light detection signal and cutting off a frequency component not smaller than the frequency fa to detect a light intensity signal I(ν) at a specific light frequency absorbed by a component to be measured in a sample gas; and an operation section. The operation section includes a first operation means for calculating a density c of the component from the harmonic signal intensity Signal(ν) and a reference light intensity signal I0(ν) and a second operation means for calculating the density c from the light intensity signal I(ν) and the reference light intensity signal I0(ν).
Abstract:
An electronic device may have a display with a brightness that is adjusted based on ambient light data from one or more ambient light sensors. An ambient light sensor may include at least one silicon-based photosensor. The silicon-based photosensor may generate a corresponding raw sensor reading. Processing circuitry associated with the ambient light sensor may analyze the raw sensor reading to determine the type of light source that is present by comparing measurements from at least two different photosensors, by determining the color temperature of the light source, and/or by determining the modulation frequency of the light source. A compensation factor may then be selected by referring to a lookup table. The processing circuitry may compute a compensated sensor reading based on the raw sensor reading and the selected compensation factor. The brightness of the display may be adjusted based on the compensated sensor reading computed in this way.