Abstract:
A scanned optical system for use in optical probing applications provides a large Field of View (FOV) for objective lenses having high Numerical Aperture (NA), such as Solid Immersion Lenses (SIL's). This enables high resolution imaging of semiconductor devices for such applications as laser probing, TIVA/LIVA, OBIRCH, and photon emission timing analysis. A hybrid scanning optics configuration is disclosed to provide high resolution imaging over a small area along with low resolution imaging over a large area.
Abstract:
The present invention is an appearance inspection apparatus and method utilizing multiple light sources in a lighting unit 30 to alternately irradiate, line by line, side light from a side light source and slit light from a slit light source onto board 1 to be inspected. A correction value memory unit stores digital correction values required for correcting shadings for the side light source and the slit light source and an analysis unit utilizes these digital correction values to correct shadings on the image data. A highly accurate image is thus obtained.
Abstract:
An optical detection and orientation device is provided comprising housing having an excitation light source, an optical element for reflecting the excitation light to an aspherical lens and transmitting light emitted by a fluorophore excited by said excitation light, a focussing lens for focusing the emitted light onto the entry of an optical fiber, which serves as a confocal aperture, and means for accurately moving said housing over a small area in relation to a channel in a microfluidic device. The optical detection and orientation device finds use in identifying the center of the channel and detecting fluorophores in the channel during operations involving fluorescent signals.
Abstract:
A scanning head assembly is provided, the scanning head suited for use with instruments that characterize the absorption, fluorescence, and/or luminescence properties of one or more samples contained within a sample plate or microplate. The scanning head assembly is coupled to a pair of scanning mechanisms, thereby allowing the head assembly to be raster scanned along both the x- and y-axis. Although the scanning preferably follows a serpentine pattern, other scan patterns can be utilized. Single or multiple measurements can be made per sample well, multiple measurements either being reported individually or averaged together. Although the scanning head assembly can utilize a variety of configurations, in the preferred embodiment the scanning head assembly has a C-shape with the light source and associated optics mounted in the lower arm of the assembly and the detector and associated optics mounted in the upper arm. Preferably the optics associated with the source include one or more optical filters that regulate the wavelength of light radiating the sample.
Abstract:
An on-line scanning sensor system includes first and second horizontally extending guide members connected by side members to define a rigid box-like frame, and a support structure for suspending the box-like frame via vibration-absorbing devices such that vibrations are substantially attenuated before reaching the guide members. Further, the system includes a carriage mounted on the first guide member for scanning motion across a traveling web of sheet of material, and interferometer components mounted to the carriage for splitting and recombining infrared light and for directing a collimated beam of the recombined light onto the traveling sheet. Still further, the system includes a detector for receiving light from the interferometer components during scanning.