Abstract:
A quality control station (2) for a sheet element processing machine, having at least one camera (6) arranged for capturing images of sheet elements (4) transported through the quality control station (2), and further having an illumination unit (5) with at least one light emitter (16) and two reflectors (12, 14), the illumination unit (5) directing light onto a viewing area of the camera (6) such that the illumination intensity is constant despite changing media thickness. An illumination unit for such quality control station is disclosed.
Abstract:
Provided is a method of producing prepreg including: inspecting, with an optical device, in a resin sheet made of a release paper and a resin film which is formed by coating the release paper with a resin to be impregnated into a carbon fiber bundle, the surface of the resin film, detecting a defect in the surface of the resin film which would be the cause of a defect in the prepreg to be produced, and judging the type of the detected defect; or inspecting, with an optical device, the surface of the prepreg after the release paper is separated from the prepreg sheet which is formed by impregnating a resin forming the resin film into the carbon fiber bundle, detecting defects in the surface of the prepreg, and judging the type of the detected defect.
Abstract:
An apparatus and a method for scanning a surface of an article such as a wooden piece transported along a travel path axis, are capable of generating two complementary color image frames representing the surface of the article in an efficient way. While the sensing field of an imaging sensor is directed transversely toward the travel path axis, a first linear-shaped light beam characterized by a first wavelength is directed toward the scanning zone to form a first reflected line onto the article surface. A second linear-shaped light beam characterized by a second wavelength is directed toward the scanning zone to form a second reflected line onto the article surface. The first and second light sources are activated alternately according to a predetermined frequency, so that the imaging sensor is caused to capture alternately the first and second reflected lines to produce interlaced sequences of reflected intensity image data, which are then separated to generate two complementary color image frames representing the surface of the article.
Abstract:
A method for inspecting a defect of a hollow fiber porous membrane having substantially uniform, continuous inner hollow portions comprises steps for introducing a part of the hollow fiber porous membrane into an irradiation chamber, for irradiating the hollow fiber porous membrane with light from the outside in the irradiation chamber, and for detecting light exiting the hollow fiber porous membrane on the outside of the irradiation chamber.
Abstract:
A conventional problem in which inspection performance deteriorates as a transparent plate material becomes larger is solved. Included are the step of capturing an image (hereinafter called a first image) of a main surface of a transparent plate material 1 by using a first reflective bright-field optical system disposed at a main surface side of the transparent plate material 1, the first optical system including a linear light source 2 and a camera 3; the step of capturing an image (hereinafter called a second image) of a rear surface of the transparent plate material 1 in the same way; the step of searching for a defect candidate in each of the first and second images; and the step of checking, based on a result of the search, whether defect candidates are located at positions corresponding to each other in the first and second images; when defect candidates are found from both the first and second images, regarding the defect candidates as a defect; and when a defect candidate is found from only one of the first and second images, regarding the defect candidate as a pseudo defect.
Abstract:
The present invention is an appearance inspection apparatus and method utilizing multiple light sources in a lighting unit 30 to alternately irradiate, line by line, side light from a side light source and slit light from a slit light source onto board 1 to be inspected. A correction value memory unit stores digital correction values required for correcting shadings for the side light source and the slit light source and an analysis unit utilizes these digital correction values to correct shadings on the image data. A highly accurate image is thus obtained.
Abstract:
A highly uniform infrared illumination source for illuminating a stripe of a moving sensitized web for line scan imaging of imperfections in the coating on the web by a CCD imaging camera. A light integrator having an elongated housing formed with side and end walls defines a linear light integrating cavity having diffusely reflecting interior wall surfaces. An elongated array of infrared LEDs is spaced along the side wall for emitting light into the cavity for integration within the cavity. A longitudinally extending slit is formed in the side wall through which a diffuse, linear light beam exits the elongated slit having a varying longitudinal intensity profile. The intensity of the light emitted by the LEDs is modulated in an intensity pattern that alters the varying longitudinal intensity profile of the linear light beam to provide a desired longitudinal intensity profile of the stripe of diffuse illumination. Preferably, the intensity modulation renders more uniform the longitudinal intensity profile of the linear light beam illuminating the web as viewed by the imaging camera. The desired light intensity profile along the length of the emitted light beam is achieved by clustering the LEDs with LED drive circuits operated at different drive currents as a function of a set point control signal appropriate to the characteristics of the imaging camera and a transmitted light intensity feedback signal to maintain the intensity pattern of the LEDs and the uniform intensity profile as viewed by the imaging camera regardless of the optical density of the web.
Abstract:
Apparatus and method for inspecting surface quality of a moving sheet of metal illuminates a surface of the moving sheet by the use of at least two lamps. The region which is illuminated by the lamps is inspected by a sensing device. The angle of incidence for the light beams from the lamps are from the near and dark fields. The sensing device picks up highlighted or brightened portions of the sheet due to surface irregularities. By use of a multiplicity of lamps and a single sensing device, such as a video recorder, an inexpensive yet very sensitive system is provided for detecting irregularities in the surface of the moving sheet. The system may be observed by an operator to determine locations of irregularities and as well the system may be adapted to document locations on the moving sheet where the irregularities occur.
Abstract:
An image inspection apparatus includes an illuminating section for irradiating illumination light, a line camera in which a plurality of imaging elements are arrayed to be linearly arranged, the line camera receiving the light irradiated from the illuminating section and reflected on the inspection target object, a display section for displaying an image captured by the line camera, an optical axis adjusting section for adjusting an optical axis of the line camera, a trigger setting section for specifying a trigger that specifies timing when the inspection target object is imaged by the line camera, an aspect ratio adjusting section for adjusting longitudinal and lateral pixel resolutions of the image captured by the line camera, and a display control section for displaying the optical axis adjusting section, the trigger setting section, and the aspect ratio adjusting section on the display section in order.
Abstract:
[Object] To measure a surface shape of a strip-shaped body made of a metallic body at higher speed with higher precision while suppressing occurrence of speckle noise.[Solution] A shape measurement apparatus according to the present invention includes: a linear light source that includes a superluminescent diode and applies linear light spreading in a width direction of the strip-shaped body to a surface of the strip-shaped body; a screen on which reflected light of the linear light off the surface of the strip-shaped body is projected; an area camera that captures an image of the reflected light of the linear light projected on the screen; and an arithmetic processing apparatus that calculates the surface shape of the strip-shaped body using the captured image of the reflected light of the linear light captured by the area camera. The linear light source has a spectral half-width of 20 nm or more, and is placed in a manner that an angle θ formed by an optical axis of the linear light source and a direction normal to the surface of the strip-shaped body and a wavelength λ of the linear light satisfy Formula (I) related to specularity of the strip-shaped body.