Abstract:
Method of generating a scenario of electromagnetic noise for monitoring the reliability of a sensitive apparatus, characterized in that it includes the steps consisting in: defining environmental electromagnetic conditions relating to the environment of the sensitive apparatus, determining a positioning of the sensitive apparatus in the environment, and generating, on the basis of the environmental electromagnetic conditions and of the positioning of the sensitive apparatus, a scenario of electromagnetic noise including a set of permanent noises and a set of transient noises.
Abstract:
An apparatus for providing auxiliary signals on a high speed electrical signal network is provided such that the auxiliary signals may be used for independent monitoring or communication of monitored information without affecting data or bit error rates for the primary high speed data signals. The auxiliary signals may be used as part of a built-in testing of a network, including electrical time-domain reflectometry measurements to determine fault locations in a network.
Abstract:
An on-chip receiver sensitivity test mechanism for use in an integrated RF transmitter wherein the transmitter and the receiver share the same oscillator. The mechanism obviates the need to use expensive RF signal generator test equipment with built-in modulation capability and instead permits the use of very low cost external RF test equipment. The invention utilizes circuitry already existing in the transceiver, namely the modulation circuitry and local oscillators to perform sensitivity testing. The on-chip LO is used to generate the modulated test signal that otherwise would need to be provided by expensive external RF test equipment with modulation capability. The modulated LO signal is mixed with an externally generated unmodulated CW RF signal to generate a modulated signal at IF which is subsequently processed by the remainder of the receiver chain. The recovered data bits are compared using an on-chip BER meter or counter and a BER reading is generated. The BER reading is used either externally or by an on-chip processor or controller to establish a pass/fail indication for the chip.
Abstract:
Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprising: a receiver configured to de-modulate symbols from at least one of a plurality of spectrally overlapping carrier signals; a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; and a controller programmed to instruct the transmitter to transmit a coarse timing adjustment followed by at least one secondary timing adjustment, wherein the secondary timing adjustment is a fine tuning adjustment with respect to the coarse timing adjustment.
Abstract:
In the past, there has been such a problem that a line failure could not be quickly detected on the basis of the difference between receiving times of a plurality of pieces of information. This communication device capable of solving the problem is provided with a control means which receives, from an opposite device connected through first and second lines, first information transmitted through the first line, and second information transmitted simultaneously with the first information through the second line, and a detection means which detects the line failure of the second line from the lapse of a first monitoring time without receiving the second information by the control means, after the reception of the first information.
Abstract:
Disclosed herein is a dual processing system capable of ensuring real-time processing in a protocol conformance test. A protocol testing device performs a test on a layer under protocol test provided in a device under test. A communication device processes the protocol of a layer below the layer under protocol test between the device under test and the protocol testing device. The communication device processes a protocol test message, requiring real-time processing, instead of the protocol testing device, and transmits processing results for the protocol test message to the protocol testing device. The protocol testing device processes a protocol test message, not requiring real-time processing, and determines the conformance of the layer under protocol test provided in the device under test based on the processing results for the protocol test message.
Abstract:
A set of one or more receiver parameters is adjusted. It is determined whether to adjust the set of receiver parameters. In the event it is determined to adjust the set of receiver parameters, a new set of values is generated for the set of receiver parameters using a cost function (where the cost function does not assume a noise signal in a receive signal to have a particular statistical distribution) and the set of receiver parameters is changed to have the new set of values.
Abstract:
In one embodiment, the present invention includes a method for receiving an error correction code for information from a first port of a first agent and receiving the information from a second port of the first agent by probing a first link under test that couples the first agent and a second agent. The code may be used to validate the information, e.g., in a probe receiver during test or debug operations. Other embodiments are described and claimed.
Abstract:
A circuit and method for digitizing jitter in a high speed digital signal receives a digital signal using a comparator and supplies a clock signal to a counter. The circuit and method determine the frequency of the digital signal using the clock signal and the counter, and calculate the period of the digital signal based on the frequency (using a logic element). The method and circuit provide a linearized delay for jitter analysis based on the period of the digital signal (using a delay shift circuit) and output a delayed digital signal from the digital signal based on the linearized delay (using a measure delay circuit). The circuit and method supply the digital signal and the delayed digital signal to a programmable unit. The programmable unit comprises flip flops. The circuit and method count transitions of the flip flops within the programmable unit using the counter. The flip flops transition when the digital signal differs from the delayed digital signal. The circuit and method repeat the counting of the transitions of the flip flops for different time intervals to generate a jitter histogram of the digital signal using the logic element.
Abstract:
Upon detection of a trigger, such as the exceeding of an error threshold or the direction of a user, a diagnostic link system enters a diagnostic information transmission mode. This diagnostic information transmission mode allows for two modems to exchange diagnostic and/or test information that may not otherwise be exchangeable during normal communication. The diagnostic information transmission mode is initiated by transmitting an initiate diagnostic link mode message to a receiving modem accompanied by a cyclic redundancy check (CRC). The receiving modem determines, based on the CRC, if a robust communications channel is present. If a robust communications channel is present, the two modems can initiate exchange of the diagnostic and/or test information. Otherwise, the transmission power of the transmitting modem is increased and the initiate diagnostic link mode message re-transmitted to the receiving modem until the CRC is determined to be correct.