Abstract:
A method and system for sensing pressure in a seat cushion are embodied in a pressure sensing system including a bag positioned within the seat cushion and a pressure sensor which is mounted to an outer surface of the bag. The bag is filled with a fluid and includes a plurality of fluidically connected sections formed to restrict a flow of fluid between the sections. The pressure sensor includes a diaphragm and is mounted to the bag with the diaphragm being positioned against the outer surface of the bag such that the pressure sensor provides an indication of a pressure of the fluid in response to movements of the outer surface toward the diaphragm.
Abstract:
A hydrostatic weight sensor incorporates a bladder having a plurality of cells in fluid communication with one another, and with the outlet of a check valve, the inlet of which is in fluid communication with a source of sensing fluid, preferably the atmosphere. Cell-filling and cell-evacuating restoring mechanisms are operatively coupled to respective portions of the cells of the bladder. When the applied load is removed from the hydrostatic weight sensor, the volume of those cells operatively coupled to the cell-filling and cell-evacuating restoring mechanisms are respectively restored and evacuated, whereupon if the pressure becomes less than the local atmospheric pressure, then fluid is added to the bladder through the check valve, thereby restoring lost sensing fluid. A pressure sensor operatively coupled to the bladder generates a signal responsive to the pressure of the sensing fluid within the bladder, and a signal processor calculates the weight of the occupant therefrom.
Abstract:
This invention provides an overload protection device wherein a dangerous situation warning is given to workers in architectural construction when a load value imposed on a temporary column reaches a preset value. The device comprises a load pedestal above and a base pedestal below, a load detecting equipment which detects the load value on the load pedestal after converting the load value into a hydraulic pressure value, a pressure detecting equipment which operates when the pressure reaches the preset value, and a notice equipment which informs workers that the load value imposed on the temporary column has reached the preset value.
Abstract:
In one embodiment of the present invention, a sensing system utilizing a capacitive sensor includes an integrator which is connected to the sensor and has an operational amplifier and an integrator capacitor, a reference voltage source, a clock generator generating a 3-phase clock, and a number of switches. The switches, during the first phase of the clock connect the sensor capacitors to the reference voltages and cause the capacitors to become charged, and connect the output and the input of the amplifier cand cause the integrator to be shorted. During the second phase, the switches connect the sensor capacitors contained in the capacitive sensor to the ground and disconnect the input of the integrator from the output of the integrator to cause the charges on the sensor capacitor to be transferred to the integrator capacitor. During the third phase, the switches connect the sensor capacitors to the output of the integrator, and the integrator capacitor to the groung so that the charge is transferred from the integrator capacitor to the sensor capacitors of the capacitive sensor. Thus, the output of integrator becomes a scaled version of the difference over the sum of the sensor capacitors. The scale factor can be adjusted by adjusting the reference voltage.
Abstract:
A load cell for transmitting a signal depending on the force exerted thereon has an elastic element in the form of a rubber sleeve (11), which is in contact with a pressure transducer (14) and is enclosed in an annular compartment formed by an annular recess in a housing (2) and a corresponding recess in a rod (6), that is exposed to the force and extends into the housing. A ring (10, 12) is arranged at each end of the rubber sleeve to transmit forces in the two axial directions of the rod to the sleeve from the respective end shoulders (2', 3', 8', 9') of the recesses
Abstract:
A combine has a forward vertically adjustable header or attachment for removing crop material from the field. The header is pivotally mounted on the combine frame and is vertically adjusted by varying the length of a hydraulic cylinder that has one end attached to the header and its other end attached to the combine frame by a pivot pin that includes a force sensor that generates an electric signal proportional to the weight of the header supported by the cylinder. The electric signal provides an input to a control system that controls the flow of hydraulic fluid to and from the hydraulic cylinder.
Abstract:
A measurement device (10) is disclosed that uses the actual hydraulic cylinders of the aircraft landing gear to weigh the aircraft. The device (10) comprises a pressure-weigh sensitive transducer (12) with a flow-through passage (14) and adaptors (20a, 20b) to attach the device to the standardized service valve on the aircraft landing gear. The transducer (12) measures the pressure in the landing gear's hydraulic cylinder. This measurement signal is converted into an aircraft weight and center of gravity location. These determinations are displayed on a converter/display (50). The transducer (12) has a flow-through passage (14) to allow servicing of the landing gear's hydraulic cylinder.
Abstract:
A sensing system including a sensing device with cooperating electrical components which move relative to each other in response to a sensed environmental parameter to yield a reactance signal, which is transmitted to a remotely located processor having an oscillator for receiving the transmitted signal and generating a transduced signal whose value corresponds to the value of the environmental parameter.
Abstract:
The weighing device for wheel loads has a platform (3) which distributes the load over a plurality of elongated hollow elements (2) disposed parallel with and at equal distances apart from and alongside one another on a baseplate (1). The hollow elements (2) consists of springing material and their cavities (12) are filled with fluid. A connecting line links the cavities (12) to a measuring device which is calibrated in units of weight and measures the volume of fluid displaced from the cavities (12) under load. The cavities (12) in the hollow elements (2) have a split or gap-shaped cross-section, and are substantially parallel with the platform (3). The gap width in the hollow elements (2) is so dimensioned that the inside faces of the hollow elements (2) which define the gap (12) at least partially abut each other when the weighing device is overloaded, prior to the elasticity limit of the hollow elements (2) being reached. By virtue of the cross-sectionally split or gap-shaped construction of the cavities (12 ), a plastic deformation of the hollow elements (2) is easily avoided without the disposition of rod elements in the cavities.
Abstract:
A device for measuring forces exerted by the jaws of a chuck under both static and dynamic rotary conditions is characterized by an elongate housing and a piston in a cylinder bore in the housing and extending generally perpendicular thereto. The piston and housing are adapted to be gripped between the jaws of the chuck to pressurize a fluid in the cylinder, and the pressure of the fluid is coupled with a gauge which is moved out of an end of the housing by an amount in accordance with the pressure, and therefore in accordance with the force exerted by the jaws, and a graduated scale on the gauge provides a visual indication of the force.