Abstract:
The present disclosure provides compounds of formulas (1)-(3), and compositions and methods of use thereof. The present disclosure also provides methods of preparing a provided compound and composition, and methods of characterizing a provided compound and composition.
Abstract:
The present application relates to compositions comprising selenium compounds, such as 5′-Methylselenoadenosine, a compound of Formula (I), and combinations thereof, and methods of using the same for inhibiting β amyloid aggregation, ApoE4 expression, p38 or Tau protein phosphorylation, or increasing Neprilysin and Insulin Degrading Enzyme expression.
Abstract:
Systems and methods for estimating meat producing animal feed conversion efficiency and carbon footprint, such as to allow adjustments to be made in the animals feed to improve meat production, reduce waste, and/or reduce the carbon footprint. In embodiments of the present application, a system is provided that integrates a digestion model of an animal feed with weight gain efficiency and carbon footprint. Such systems and methods are useful to analyze and compare different animal feed compositions that differ from one another in one or more components and/or to analyze the effect of the addition of a feed supplement on weight gain efficiency and/or carbon footprint. In embodiments, the systems and methods described herein provide a feed parameter-carbon footprint compromise. A feed parameter-carbon footprint compromise is useful to adjust animal feed composition by balancing weight gain efficiency with effects on carbon footprint. Different feed supplements or amounts of feed supplements, and/or different feed compositions are selected based on the desired feed parameter-carbon footprint compromise.
Abstract:
A composition for preventing or reducing harmful effects of protozoal infection is provided, comprising in one embodiment a yeast cell wall and a preparation derived from oregano. The composition may further include a mineral nutrient selected from selenium and/or zinc. The composition may also include a preparation derived from Yucca. Efficacy of the composition is shown against a variety of protozoal organisms.
Abstract:
The present invention relates to compositions and methods for altering cell function. In particular, the present invention provides compositions comprising selenium (e.g., SEL-PLEX) and methods of using the same (e.g., as a therapeutic and/or prophylactic treatment for neurodegenerative disease). Additionally, the present invention demonstrates that specific forms of selenium (e.g., SEL-PLEX) possess the ability to alter expression of genes associated with disease and/or aging while other forms of selenium (e.g., selenomethionine) do not.
Abstract:
The present invention relates to compositions comprising yeast cells and/or yeast cell components and methods for producing and utilizing the same. In particular, the invention provides novel yeast comprising altered cell wall structure (e.g., clay and/or clay component(s) integrated (e.g., interlaced) into cell wall(s) and/or cell wall(s) comprising altered glucan:mannan ratio), methods of producing the same, compositions comprising and/or derived from the same, and methods of using the same (e.g., to sequester and/or adsorb bacteria and toxins). Compositions and methods of the invention find use in a variety of applications including dietary (e.g., admixing with feedstuffs or otherwise feeding to animals), therapeutic, prophylactic (e.g. admixing with bedding sources and/or other materials that come into contact with animals, usage during food and beverage processing and manufacture, and usage during filtration of liquids) as well as research applications.
Abstract:
The present invention relates to compositions and methods for the conversion of lignocellulosic material to fermentable sugars and to products produced therefrom (e.g., ethanol, foodstuffs, etc.). In particular, the invention provides lignocellulose-degrading compositions (e.g., generated via incubation of microbes with lignocellulosic priming feedstock in solid-state fermentation format) and methods of using the same (e.g., in saccharification and/or hydrolysis steps (e.g., on ethanologenic feedstock) and as food or feed additives).
Abstract:
The present invention is a retractable afterburner shroud for use upon a jet engine. The retractable shroud conforms to an outer surface of a jet engine. The afterburner shroud is affixed by a plurality of moveable support arms. The afterburner shroud is retractable. During operation of the afterburner shroud, the afterburner shroud is extended rearward toward the exhaust of the jet engine. A storage tank provides liquid oxygen through the support arms to a mixing ring located within the afterburner shroud. The mixing ring mixes the liquid oxygen and fuel to form a combustible mixture. The combustible mixture is injected into the exhaust wherein the mixture is ignited. The ignited mixture provides additional thrust for the jet engine.
Abstract:
Molecularly imprinted polymers (MIPs) are materials exhibiting molecular recognition of a target molecule. MIPs are synthesized in the presence of an aflatoxin template, a mimic to the targeted molecule, used as an imprint that is further washed away with suitable solvent after completion of the polymerization process, leaving a cavity in the polymer of the same stereochemistry, functionality and morphology to the template. When the MIP encounters an aflatoxin, the molecule is bound in the cavity with a receptor-like affinity.
Abstract:
The present application relates to compositions comprising selenium compounds, such as 5′-Methylselenoadenosine, Se-Adenosyl-L-homocysteine, Gamma-glutamyl-methylseleno-cysteine, a compound of formula (I), formula (II), a compound of formula (III) and combinations thereof, and methods of using the same in enhancing mitochondrial function, or treating mitochondrial dysfunction.