摘要:
A single crystal orientation identifying and determining apparatus for semiconductor wafers capable of conducting the facial discrimination of a semiconductor wafer and the determination of the crystal orientation thereof, which comprises a first wafer store; an alignment device for aligning the wafer in a predetermined orientation; an X-ray inspection device for inspecting the wafer as to whether or not the inspected face of the wafer is a predetermined particular face, and whether or not the orientation of the principal plane of the wafer is within a predetermined range, said X-ray detector, and X-ray detector, and an X-ray inspection stage; a second wafer store; a first conveyor for conveying the wafer from the first wafer store to the alignment device; a second conveyor for conveying the wafer form the alignment device to the X-ray inspection device, and a third conveyor for conveying the wafer from the X-ray inspection device to an arbitrary address in the second wafer store determined based on the result of the X-ray inspection and the wafer's address in the first wafer store.
摘要:
Disclosed is a method of controlling the diameter of a single crystal produced by the Czochralski method. The diameter of a tapered portion of the single crystal is controlled by controlling the temperature of a melt in a crucible and the rotational speed of the crucible. The control range of the rotational speed of the crucible is made narrower as the diameter of the tapered portion approaches closer to that of a body portion, and the rotational speed is made constant while the body portion is grown.
摘要:
A melt-surface initial position adjusting apparatus which is suitable for use in a monocrystal growing system employing the Czochralski method to adjust the vertical position of the melt surface before the growing of a monocrystal. The apparatus can ensure a highly precise measurement of a crystal-diameter measuring device, thereby enabling a reduction in the costs of producing a monocrystal bar. Before the growing of a crystal, the vertical position (H) of the surface (16A) of a melt within a crucible is measured. The crucible is moved vertically on the basis of the measured value in such a manner as to maintain the distance (L) between the melt surface (16A) and an image sensor (28) for measuring the crystal diameter at a predetermined value.
摘要:
The open end of the nozzle 42 is positioned close to and facing the surface of the metal base 20 on the side were the portion of the semiconductor ingot is to be cut off. An electromagnetic valve 46 is provided in the passage through which compressed air is supplied to the nozzle 42. The initial position of the blade 19 is detected by the detector 50U and the counter 52 measures the distance the blade 19 travels downward from the detected position and then the comparator 56 detects the point at which the measured value matches the value set on the numeric value setting device 54. The electromagnetic valve 46 is opened to emit compressed air from the nozzle 42 after this detection, until the detection of the lower limit position of the blade 19 by the detector 50D. This compressed air travels along in the direction of the rotation of the metal base 20 to enter the notch of the partially cut portion of the semiconductor ingot 10 made by the inner circumference cutting edge 22 and to consequently blow out the liquid coolant present between the metal base 20 and the semiconductor ingot 10.
摘要:
The method automatically controls the growing of a single-crystal neck portion by the CZ method. The speed of pulling up the crystal is adjusted so that the crystal diameter control deviation becomes closer to zero. Combinations of the crystal diameter control deviation .DELTA.D being large or small and the pulling-up speed V being high or low are employed as fuzzy inference conditions. According to such conditions, a correction value for the power supplied to a melt heater 18 is calculated, based on the fuzzy inference.
摘要:
To keep, with a simple structure, roller bearing devices, rotatably supporting the end sections of two rollers, at the same and substantially constant temperature, working fluid is applied not only to the slicing sections, but also to roller bearing devices 14b, 14c, 16b, 16c, 18b and 18c. The flow rate of the working-fluid supply to nozzles 20, 22 for slicing-section is controlled in such a way that the temperature of the working fluid coming down from the slicing sections becomes a first preset temperature; and the flow rate of the working-fluid supply to nozzles 24-29 for bearing-section is controlled in such a way that the temperature of the working fluid coming down from the bearing sections becomes a second preset temperature.
摘要:
A very efficient method is proposed for extinguishment of fire involving various dangerous materials hardly fire-extinguishable by conventional methods, such as alkali metal peroxides, alkyl aluminum compounds, diketene and calcium carbide or phosphide in contact with water. The method comprises sprinkling, over the burning site of the fire, a silica-based or silica.multidot.alumina-based powder of porous particles having a specified particle diameter and a specified pore diameter, of which the content of silicon dioxide is at least 80% by weight or the total content of silicon dioxide and aluminum oxide is at least 90% by weight. When the burning material is metallic sodium or potassium, the powder sprinkled is a blend of the above mentioned silica-based powder and a powder of sodium chloride or potassium chloride, respectively, so that the fire can be extinguished more rapidly and reliably than in the use of the silica-based powder alone.
摘要:
A polishing apparatus for polishing an object to be polished at a high flatness includes at least one plate with at least one object to be polished secured at an underside thereof, a head section surrounding the plate with a predetermined gap therebetween, a pressure applying device for applying a pressing force to the top of the plate, and a holding device for holding the plate in the plane of the polishing movement of the object to be polished. The pressure applying device and the holding device are both disposed in an inner space of the head section, the latter being movable perpendicular to the plane of the polishing movement. The attaching position of the holding device on the outer surface of the plate is set substantially at the same height as or at a position lower than the attaching position of the holding device on the inner surface of the head section. The intersecting point of the imaginary lines through the fixing positions of the holding device on the head section and those corresponding to them on the plate substantially lies on or at a position lower than the polishing surface of the object to be polished.
摘要:
An automatic cleaning apparatus for disks is provided with detachable sections including, in order, a workpiece feeder section, an isolation section, a scrubber section, a second isolator section, and a workpiece receiver section. Additional units of any section may also be assembled into the cleaning apparatus. Transfer of cleaning liquid from one section to another is minimized by adjustment of a weir on each section to establish a constant liquid level in each section. Additionally, turbulence at the opening from one section to another is reduced by use of a thin shutter closed by an apertured press piece. Improved arrangements for introducing workpieces into the cleaning fluid, scrubbing the workpieces, recovering the workpieces from the fluid and transporting the workpieces within the cleaning fluid are provided so that the entire scrubbing process can be carried out automatically and with minimum contamination or damage of the workpieces.
摘要:
The cutting process is executed after the grinding process and for one semiconductor ingot, one grinding device and one inner diameter saw slicing machine are used to perform grinding process and cutting process respectively. During the grinding process, the entirety of the cylindrical body portion of the semiconductor ingot is cylindrically ground, a portion of the tail end is cylindrically ground, the orientation flat position is determined and an orientation flat is formed by surface grinding. During the cutting process the tail portion is cut off and a sample for lifetime measurement is taken and a wafer sample is cut off from the end of the cylindrical body portion on the tail side. The semiconductor ingot is reversed in the direction of the axis and the head portion of the semiconductor ingot is cut off and a wafer sample is cut off from the cylindrical body portion on the head side. Wafer samples are cut off from the end of the cylindrical body portion on the head side and from the middle portion of cylindrical body portion to divide the cylindrical body portion into two blocks.