摘要:
A CMOS integrate circuit has improved protection to damage from electrostatic discharge (ESD) events because the circuit is formed with a virtual lateral bipolar transistor submerged in the morphology of the integrated circuit beneath an active circuit element of the circuit, and being formed by impurity atoms implanted into the substrate structure as ions which disperse laterally to form a dispersed charge permeation zone through which surge current from an ESD is conducted safely at a current level sufficiently low that the substrate material of the integrated circuit is not damaged. The integrated circuit may be formed with an intrinsic zener diode having a reverse bias breakdown voltage high enough to not interfere with the normal operation of the integrated circuit, and low enough to allow surge current from an ESD event to safely flow to ground potential.
摘要:
An integrated circuit structure, and a method of making same is disclosed wherein one or more patternable busses of conductive material (such as polysilicon) interconnect electrode strips (such as gate electrode strips) of the same conductive material formed over active areas (such as MOS islands). The busses are formed on the structure over field oxide portions thereon during the initial step of patterning the layer of conductive material to expose the active areas and to form the electrodes thereover. After further processing to form other electrode regions in the active areas (e.g., source and drain regions in N-MOS and P-MOS islands), but prior to formation of an insulation layer over the structure for formation of a metal layer thereon, the busses are subjected to a further patterning step to form custom interconnections, as desired, between various electrodes in the integrated circuit structure. By forming such busses during the initial patterning step to form a genetic structure, and then providing a second patterning step, wherein custom interconnections are formed in the layer of conductive material between electrodes of various active devices, some of the custom interconnections to form specific electrical circuits, formerly implemented at the metal layer level, can be eliminated, thereby reducing the total number of contacts formed between the electrodes and the metal layer or layers, as well as simplifying the metal wiring needed to form the desired electrical circuit.
摘要:
A novel configuration for MOS devices employed in a partially generic gate array type chip having large numbers of generally MOS devices. The MOS devices have a non-rectangular configuration and include at least a first and second region of conductivity type differing from the conductivity type of the gate array substrate that are separated by a channel over which an electrode strip such as a gate is formed. The non-rectangular configuration of the MOS devices provides a space savings that permits the presence of a greater number of devices on a single chip as compared to conventional gate array chips. In accordance with another aspect of the invention one or more patternable busses of conductive material, such as polysilicon, interconnect electrode strips of the MOS devices, such as gates strips, that are made of the same conductive material as the busses. The busses are formed on the gate array structure over field oxide portions thereof during an initial step of patterning the layer of conductive material to expose active areas of differing conductivity type and to form the electrodes thereover. After further processing to form other electrode regions in the active areas such as source and drain regions, but prior to formation of an insulation layer over the structure for formation of a metal layer thereon, the busses are subjected to a further patterning step to form custom interconnections between various electrodes in the gate array structure so as to form a desired custom chip.
摘要:
Various techniques for forming superconductive lines are described whereby superconductive lines can be formed by stamping, etching, polishing, or by rendering selected areas of a superconductive film (layer) non-superconductive. The superconductive material can be "perfected" (or optimized) after it is formed into lines (traces). In one embodiment, trenches are etched in a substrate, the trenches are filled with superconductive material, and any excess superconductive material overfilling the trenches is removed, such as by polishing. In another embodiment, superconductive lines are formed by rendering selected areas of a superconductive layer (i.e., areas other than the desired superconductive lines) non-superconductive by "damaging" the superconductive material by laser beam heating, or by ion implantation. Superconductive lines formed according to the invention can be used to protect semiconductor devices (e.g., transistor structures) from over-current or overheating conditions such as those caused by CMOS latch-up. Current density limits and/or thermal limits of superconductors are employed to cause a superconductive trace to become non-superconductive when these limits are exceeded.
摘要:
A microelectronic cell includes a semiconductor substrate, an active area formed in the substrate, a gate formed in the active area, and a first contact formed in the active area. The contact has a width D perpendicular to a reference axis defined in the active area, and is spaced from the reference axis by a minimum spacing E. The gate includes a first section which extends substantially parallel to the reference axis, the first contact being disposed between the first section and said reference axis, the first section being spaced from the first contact by a minimum spacing A; a second section which extends substantially parallel to and is spaced from said reference axis by a minimum spacing C
摘要:
An integrated circuit structure vertically isolated electrically from the underlying substrate is formed in/on a single crystal semiconductor substrate, such as a silicon semiconductor wafer, by first implanting the substrate with a sufficient dosage of noble gas atoms to inhibit subsequent recrystallization of the semiconductor lattice in the implanted region during subsequent annealing, resulting in the formation of an isolation layer comprising implanted noble gas atoms enmeshed with semiconductor atoms in the substrate which has sufficient resistivity to act as an isolation layer. The preferred noble gases used to form such isolation layers are neon, argon, krypton, and xenon. When neon atoms are implanted, the minimum dosage should be at least about 6.times.10.sup.15 neon atoms/cm.sup.2 to inhibit subsequent recrystallization of the silicon substrate. When argon atoms are implanted, the minimum dosage should be at least about 2.times.10.sup.15 argon atoms/cm.sup.2. When krypton is implanted, the minimum dosage should be at least about 6.times.10.sup.14 krypton atoms/cm.sup.2. The energy used for the implant should be sufficient to provide an average implant depth sufficient to form, after annealing, the noble gas isolation layer at a depth of at least about 0.5 microns from the surface.
摘要翻译:通过首先用足够量的惰性气体原子注入衬底以抑制随后的半导体晶格的再结晶,在诸如硅半导体晶片的单晶半导体衬底中/之上形成与下面的衬底电垂直隔离的集成电路结构 在随后退火期间的注入区域中,导致形成隔离层,该隔离层包含与衬底中具有充分电阻率充当隔离层的半导体原子嵌入的惰性气体原子。 用于形成这种隔离层的优选稀有气体是氖,氩,氪和氙。 当植入氖原子时,最小剂量应为至少约6×10 15氖原子/ cm 2以抑制随后的硅衬底的再结晶。 当注入氩原子时,最小剂量应至少为约2×1015氩原子/ cm2。 当植入氪时,最小剂量应为至少约6×10 14氪原子/ cm 2。 用于植入物的能量应足以提供足够的平均植入深度,以在退火之后形成距离表面至少约0.5微米深度的惰性气体隔离层。
摘要:
A plurality of macro-arrays are formed on a semiconductor substrate. Each macro-array includes a logic area in which a plurality of interconnectable logic gates are formed, and an Input/Output (I/O) area in which a plurality of I/O devices are formed. I/O terminals are formed outside the I/O area, which enable the logic devices of the macro-arrays to be interconnected with the logic devices of the other macro-arrays via the I/O devices. Alternatively, connections can be made directly to the logic devices. The interconnections are made using a pattern of conductors such that the macro-arrays are linked to form a composite gate array which provides a programmed logical functionality. A number of contiguous macro-arrays which provide the required number of gates are used, with the unused macro-arrays being cut away and discarded. The array is mounted on and electrically interconnected with a printed circuit board or other support member using a flip-chip arrangement which provides access to internal I/O connections.
摘要:
A CMOS-technology, DRAM integrated circuit includes paired P-type and N-type wells in a substrate, which wells are fabricated using a self-aligning methodology. Similarly, FET's of the DRAM circuit are fabricated in the wells of the substrate using a self-aligning methodology to provide FET's of opposite polarity in a DRAM which may have paired memory cells and dummy cells for symmetry of circuitry. The DRAM includes a multitude of annular multi-plate capacitor structures formed atop the FET's of the substrate, and plural layers of insulative dielectric with embedded bit and word traces providing for connection of the multitude of memory cells of the DRAM to external circuitry.
摘要:
Various techniques for forming superconductive lines are described whereby superconductive lines can be formed by stamping, etching, polishing, or by rendering selected areas of a superconductive film (layer) non-superconductive. The superconductive material can be "perfected" (or optimized) after it is formed into lines (traces). In one embodiment, trenches are etched in a substrate, the trenches are filled with superconductive material, and any excess superconductive material overfilling the trenches is removed, such as by polishing. In another embodiment, superconductive lines are formed by rendering selected areas of a superconductive layer (i.e., areas other than the desired superconductive lines) non-superconductive by "damaging" the superconductive material by laser beam heating, or by ion implantation. Superconductive lines formed according to the invention can be used to protect semiconductor devices (e.g., transistor structures) from over-current or overheating conditions such as those caused by CMOS latch-up. Current density limits and/or thermal limits of superconductors are employed to cause a superconductive trace to become non-superconductive when these limits are exceeded.
摘要:
A novel configuration for MOS devices employed in a partially generic gate array type chip having large numbers of generally MOS devices. The MOS devices have a non-rectangular configuration and include at least a first and second region of conductivity type differing from the conductivity type of the gate array substrate that are separated by a channel over which an electrode strip such as a gate is formed. The non-rectangular configuration of the MOS devices provides a space savings that permits the presence of a greater number of devices on a single chip as compared to conventional gate array chips. In accordance with another aspect of the invention one or more patternable busses of conductive material, such as polysilicon, interconnect electrode strips of the MOS devices, such as gates strips, that are made of the same conductive material as the busses. The busses are formed on the gate array structure over field oxide portions thereof during an initial step of patterning the layer of conductive material to expose active areas of differing conductivity type and to form the electrodes thereover. After further processing to form other electrode regions in the active areas such as source and drain regions, but prior to formation of an insulation layer over the structure for formation of a metal layer thereon, the busses are subjected to a further patterning step to form custom interconnections between various electrodes in the gate array structure so as to form a desired custom chip.