Abstract:
A cathode structure for use in an OLED device having one or more OLED layers includes a thin light-transmissive layer having a top surface and a bottom surface and including silver (Ag) wherein the Ag acts as a conductor for the cathode structure, and a light-transmissive electron-injecting layer disposed in contact with the bottom surface of the thin light-transmissive layer and with an underlying OLED layer. The structure also includes an oxide layer disposed over the thin light-transmissive layer, and a separation layer disposed between the top surface of the thin light-transmissive layer and the oxide layer.
Abstract:
A desiccant for use in an electronic device that is moisture-sensitive comprising a reactive salt of a negatively charged organometallic complex that, when it reacts with water, forms a carbon-hydrogen bond but does not form an alcohol.
Abstract:
A process of cleaning wire bond pads associated with OLED devices, including the steps of depositing on the wire bond pads one or more layers of ablatable material, and ablating the one or more layers with a laser, thereby exposing a clean wire bond pad.
Abstract:
A desiccant for use in an electronic device that is moisture-sensitive comprising a Lewis acid organometallic structure that, when it reacts with water, forms a carbon-hydrogen bond but does not form an alcohol.
Abstract:
A method of providing an encapsulation layer over an emissive portion of an OLED device includes providing an OLED substrate having one or more OLED devices, each device having an emissive portion and a connector portion, positioning the OLED substrate in sealing engagement with at least one opening in a deposition chamber to define a deposition environment for the emissive portion(s) and a non-deposition environment for the connector portion(s), and depositing in the deposition environment an encapsulation layer onto the emissive portion of the OLED device through the opening without depositing the encapsulation layer over the connector portion.
Abstract:
A top-emitting OLED device includes a substrate, a first electrode disposed over the substrate, and an organic EL media disposed over the first electrode. The device also includes a transparent or semitransparent second electrode disposed over the organic EL media, and a light transmissive desiccating film having a host and molecularly dispersed desiccant material in such host provided on or over the second electrode.
Abstract:
A desiccant for use in an electronic device that is moisture-sensitive comprising a Lewis acid organometallic structure that, when it reacts with water, forms a carbon-hydrogen bond but does not form an alcohol.
Abstract:
An encapsulated OLED device includes a substrate having a predetermined glass seal area and defining a sealed region and one or more OLED unit(s) provided over the substrate, each OLED unit having a light-emitting portion including at least one first electrode, at least one second electrode spaced from the first electrode, and an organic EL media layer provided between the first and second electrodes, wherein the light-emitting portion is provided within the sealed region. The device also includes an inorganic protection layer provided over the glass seal area and over at least a portion of the sealed region, a cover provided over the substrate and OLED unit(s), and sintered glass frit seal material provided in the glass seal area and in contact with both the cover and the inorganic protection layer to bond the cover to the inorganic protection layer and provide sealing against moisture penetration into the sealed region.
Abstract:
A method of encapsulating a plurality of OLED devices formed on a common substrate includes stacking a number of repeating assemblies of patterned layers over the OLED devices while leaving outermost portions of electrical interconnects of such encapsulated devices accessible for connecting electrical leads thereto.
Abstract:
A method of treating a cathode of an OLED device having a substrate and which has a spaced anode and organic layers between the anode and cathode includes evacuating a chamber so that it has a pressure no greater than 10−6 Torr; heating the OLED substrate in the chamber to a temperature less than 100° C.; and delivering gas, including ozone, to the evacuated chamber which includes the heated OLED substrate at a sufficient rate so that the pressure is less than 1 atmosphere, so that the life of the OLED substrate is increased and the operating voltage is decreased.