摘要:
The invention provides a method for enhancing flavour profile of beverages comprising increasing perceptibility of sweetness, increasing acidity, and decreasing astringent taste in beverages, increasing perceptibility of floral and spice notes by adding an effective flavour enhancing amount of water-soluble Palm Fruit Bioactive complex (wsPFBc/OPP) or their extracts into a beverage is disclosed a composition comprising a beverage and oil palm phenolics (OPP) or their extracts such that the OPP or their extracts modify or alter the fragrance and flavour of the beverage.
摘要:
The present invention provides compositions and method for production of shikimic acid based on extracts obtained from oil palm-based materials, and more particularly oil palm based waste materials and by-products. The method includes purifying shikimic acid from extracts comprising oil palm phenolics (OPP).
摘要:
A method for controlling and modifying biopolymer synthesis by manipulation of the genetics and enzymology of synthesis of polyhydroxybutyrate (PHB) and polyhydroxyalkanoate (PHA) polyesters at the molecular level in procaryotic and eukaryotic cells, especially plants. Examples demonstrate the isolation, characterization, and expression of the genes involved in the production of PHB and PHA polymers. Genes encoding the enzymes in the PHB and PHA synthetic pathway (beta-ketothiolase, acetoacetyl-CoA reductase and PHB polymerase or PHA polymerase) from Zoogloea ramigera strain I-16-M, Alcaligenes eutrophus, Nocardia salmonicolur, and Psuedomonas olevarans were identified or isolated and expressed in a non-PHB producing organism, E. coli. Specific modifications to the polymers include variation in the chain length of the polymers and incorporation of different monomers into the polymers to produce co-polymers with different physical properties.
摘要:
The present invention is a method for controlling biopolymer synthesis by determining the genetics and enzymology of polyhydroxybutyrate (PHB) biosynthesis at the molecular level. The purified enzymes and genes provide the means for developing new PHB-like biopolymers having polyester backbones. Specific aims are to 1) control the chain length of the polymers produced in fermentation processes through genetic manipulation, 2) incorporate different monomers into the polymers to produce co-polymers with different physical properties, and 3) examine the physical/rheological properties of these new biopolymers in order to develop further design criteria at the molecular level.The method for engineering biopolymer synthesis includes: isolation and characterization of the genes for the enzymes in the synthetic pathway (beta-ketothiolase, acetoacetyl-CoA reductase and PHB synthetase); cloning of the genes in a vector(s); placement of the vector(s) under the control of regulated promoters; expression of the genes; determination of the function and use of other factors such as substrate specificity in polymer production and composition; and isolation and physical and chemical analysis of the resulting polymers.
摘要:
The present invention is a method for controlling biopolymer synthesis by determining the genetics and enzymology of polyhydroxybutyrate (PHB) biosynthesis at the molecular level. The purified enzymes and genes provide the means for developing new PHB-like bicpolymers having polyester backbones. Specific aims are to 1) control the chain length of the polymers produced in fermentation processes through genetic manipulation, 2) incorporate different monomers into the polymers to produce co-polymers with different physical properties, and 3) examine the physical/rheological properties of these new biopolymers in order to develop further design criteria at the molecular level.The method for engineering biopolymer synthesis includes: isolation and characterization of the genes for the enzymes in the synthetic pathway (beta-ketothiolase, acetoacetyl-CoA reductase and PHB synthetase); cloning of the genes in a vector(s); placement of the vector(s) under the control of regulated promoters; expression of the genes; determination of the function and use of other factors such as substrate specificity in polymer production and composition; and isolation and physical and chemical analysis of the resulting polymers.
摘要:
Three dimensional glucan matrix compositions are prepared by separating growing yeast from its growth medium, subjecting the yeast with cell walls intact to an alkali material, thereby extracting whole glucan particles having an intact cell wall structure. The whole glucans can then, optionally, be treated with acetic acid to alter the .beta.(1-6) linkages, or with glucanase to alter the .beta.(1-3) linkages. The glucans have viscosity characteristics dependent upon the strain of yeast utilized and are useful as stabilizers or thickeners.
摘要:
Three dimensional glucan matrix compositions are prepared by separating growing yeast from its growth medium, subjecting the yeast with cell walls intact to an alkali material, thereby extracting whole glucan particles having an intact cell wall structure. The whole glucans can then, optionally, be treated with acetic acid to alter the .beta.(1-6) linkages, or with glucanase to alter the .beta.(1-3) linkages. The glucans have viscosity characteristics dependent upon the strain of yeast utilized and are useful as stabilizers or thickeners.
摘要:
Two new bacterial strains designated Zoogloea ramigera 115SL and Zoogloea ramigera 115SLR, a rifampicin resistant derivative of 115SL, have been developed. These strains are derived from the wild type Zoogloea ramigera 115, ATCC 25935. The two new strains produce a novel exopolysaccharide (EPS) and have several desirable characteristics that are absent from the parent strain, including improved culture properties, since they do not produce an EPS capsule layer like that of the parent 115 strain. The 115SL EPS is instead excreted as a slime layer which is not confined to the immediate area surrounding the cells. Since cells are not trapped within a floc where they grow at a reduced rate or die because of nutrient starvation, the new strains have more consistent and reproducible growth cycles and increased growth rates. As a consequence, exopolysaccharide production is more consistent and titers are higher. The separation of the EPS from the cells is also much easier and more economical. The other very important characteristic of strains 115SL and 115SLR is that they are able to receive foreign DNA using conventional techniques due to the absence of the capsule layer. This facilitates the application of recombinant DNA technology to control and produce novel expolysaccharides.
摘要:
A composition comprising caffeoylshikimic acids, protocatechuic acid, hydroxytyrosol, hydroxybenzoic acid, said caffeoylshikimic acids and their derivatives extracted from any part of oil palm including but not confined to the vegetation liquor of palm oil milling and palm oil mill effluent, and a method for use in the preparation of a composition containing caffeoylshikimic acids, protocatechuic acid, hydroxytyrosol, hydroxybenzoic acid, said caffeoylshikimic acids and their derivatives. The method includes the steps of pre-concentrating an extract containing the caffeoylshikimic acids, protocatechuic acid, hydroxytyrosol, hydroxybenzoic acid, caffeoylshikimic acids and their derivatives and isolating the caffeoylshikimic acids, protocatechuic acid, hydroxytyrosol, hydroxybenzoic acid, said caffeoylshikimic acids and their derivatives from said extract by liquid chromatography, wherein the elution activity of said caffeoylshikimic acids, protocatechuic acid, hydroxytyrosol, hydroxybenzoic acid, with the caffeoylshikimic acids and their derivatives varying depending on the stationary phase and the composition of the mobile phase.
摘要:
The present invention relates to a mutated pyruvate carboxylase gene from Corynebacterium. The mutant pyruvate carboxylase gene encodes a pyruvate carboxylase enzyme which is resistant to feedback inhibition from aspartic acid. The present invention also relates to a method of replacing the wild-type pyruvate carboxylase gene in Corynebacterium with this feedback-resistant pyruvate carboxylase gene. The present invention further relates to methods of the production of amino acids, preferably lysine, comprising the use of this mutant pyruvate carboxylase enzyme in microorganisms.