摘要:
Disclosed is an oxide for a semiconductor layer of a thin-film transistor, said oxide being excellent in the switching characteristics of a thin-film transistor, specifically enabling favorable characteristics to be stably obtained even in a region of which the ZnO concentration is high and even after forming a passivation layer and after applying stress. The oxide is used in a semiconductor layer of a thin-film transistor, and the aforementioned oxide contains Zn and Sn, and further contains at least one element selected from group X consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and the rare-earth elements.
摘要:
Disclosed is an oxide for a semiconductor layer of a thin-film transistor, said oxide being excellent in the switching characteristics of a thin-film transistor, specifically enabling favorable characteristics to be stably obtained even in a region of which the ZnO concentration is high and even after forming a passivation layer and after applying stress. The oxide is used in a semiconductor layer of a thin-film transistor, and the aforementioned oxide contains Zn and Sn, and further contains at least one element selected from group X consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and the rare-earth elements.
摘要:
There is provided an oxide for semiconductor layers of thin-film transistors, which oxide can provide thin-film transistors with excellent switching characteristics and by which oxide favorable characteristics can stably be obtained even after the formation of passivation layers. The oxide to be used for semiconductor layers of thin-film transistors according to the present invention includes Zn, Sn, and Si.
摘要:
There is provided an oxide for semiconductor layers of thin-film transistors, which oxide can provide thin-film transistors with excellent switching characteristics and by which oxide favorable characteristics can stably be obtained even after the formation of passivation layers. The oxide to be used for semiconductor layers of thin-film transistors according to the present invention includes Zn, Sn, and Si.
摘要:
This oxide for a semiconductor layer of a thin-film transistor contains Zn, Sn and In, and at least one type of element (X group element) selected from an X group comprising Si, Hf, Ga, Al, Ni, Ge, Ta, W and Nb. The present invention enables a thin-film transistor oxide that achieves high mobility and has excellent stress resistance (negligible threshold voltage shift before and after applying stress) to be provided.
摘要:
This oxide for a semiconductor layer of a thin-film transistor contains Zn, Sn and In, and the content (at %) of the metal elements contained in the oxide satisfies formulas (1) to (3) when denoted as [Zn], [Sn] and [In], respectively. [In]/([In]+[Zn]+[Sn])≧−0.53×[Zn]/([Zn]+[Sn])+0.36 (1) [In]/([In]+[Zn]+[Sn])≧2.28×[Zn]/([Zn]+[Sn])−2.01 (2) [In]/([In]+[Zn]+[Sn])≦1.1×[Zn]/([Zn]+[Sn])−0.32 (3) The present invention enables a thin-film transistor oxide that achieves high mobility and has excellent stress resistance (negligible threshold voltage shift before and after applying stress) to be provided.
摘要:
This oxide for a semiconductor layer of a thin-film transistor contains Zn, Sn and In, and the content (at %) of the metal elements contained in the oxide satisfies formulas (1) to (3) when denoted as [Zn], [Sn] and [In], respectively. [In]/([In]+[Zn]+[Sn])≧−0.53×[Zn]/([Zn]+[Sn])+0.36 (1) [In]/([In]+[Zn]+[Sn])≧2.28×[Zn]/([Zn]+[Sn])−2.01 (2) [In]/([In]+[Zn]+[Sn])≦1.1×[Zn]/([Zn]+[Sn])−0.32 (3) The present invention enables a thin-film transistor oxide that achieves high mobility and has excellent stress resistance (negligible threshold voltage shift before and after applying stress) to be provided.
摘要:
The oxide of the present invention for thin-film transistors is an In—Zn—Sn-based oxide containing In, Zn, and Sn, wherein when the respective contents (atomic %) of metal elements contained in the In—Zn—Sn-based oxide are expressed by [Zn], [Sn], and [In], the In—Zn—Sn-based oxide fulfills the following expressions (2) and (4) when [In]/([In]+[Sn])≦0.5; or the following expressions (1), (3), and (4) when [In]/([In]+[Sn])≧0.5. [In]/([In]+[Zn]+[Sn])≦0.3 - - - (1), [In]/([In]+[Zn]+[Sn])≦1.4×{[Zn]/([Zn]+[Sn])}−0.5 - - - (2), [Zn]/([In]+[Zn]+[Sn])≦0.83 - - - (3), and 0.1≦[In]/([In]+[Zn]+[Sn]) - - - (4). According to the present invention, oxide thin films for thin-film transistors can be obtained, which provide TFTs with excellent switching characteristics, and which have high sputtering rate in the sputtering and properly controlled etching rate in the wet etching.
摘要:
A display device includes a first substrate, a gate line disposed on the first substrate and including a gate electrode, a gate insulating layer disposed on the gate line, a semiconductor layer disposed on the gate insulating layer, a data line disposed on the semiconductor layer and connected to a source electrode, a drain electrode disposed on the semiconductor layer and facing the source electrode and a passivation layer disposed on the data line, in which the semiconductor layer is formed of an oxide semiconductor including indium, tin, and zinc. The indium is present in an amount of about 5 atomic percent (at %) to about 50 at %, and a ratio of the zinc to the tin is about 1.38 to about 3.88.
摘要:
An oxide semiconductor includes a first material including at least one selected from the group consisting of zinc (Zn) and tin (Sn), and a second material, where a value acquired by subtracting an electronegativity difference value between the second material and oxygen (O) from the electronegativity difference value between the first material and oxygen (O) is less than about 1.3.