摘要:
A self-regenerating, self-cleaning hydrophobic surface is formed when particles are secured on a carrier that is itself a mixture of particles and binder. When particles on the surface are ablated by erosion, new particles in the carrier are exposed to regenerate the self-cleaning surface, resulting in a long-lasting self-cleaning action. The self-cleaning surface may be used with particular advantage outdoors, e.g. on vehicles, where self-cleaning materials are particularly exposed to the effects of the environment.
摘要:
The invention relates to sheet extrudates with surfaces which have self-cleaning properties, and also to a simple process for producing these self-cleaning surfaces. The process of the invention is very simple, since it can make use of existing equipment. Sheet extrudates are usually smoothed by means of rolls. The process of the invention makes use of these rolls by applying microparticles to these rolls. The particles are impressed into the surface of the extrudate and thus transferred thereto during smoothing of the extrudates. The process of the invention provides access to self-cleaning surfaces which comprise particles with a fissured structure, without any need to apply an additional emboss layer or a foreign-material carrier layer to the moldings. Extrudates of the invention may have the shape of a film or sheet, for example.
摘要:
A self-cleaning surface which has an artificial, at least partially hydrophobic, surface structure made from elevations and depressions, where the elevations and depressions are formed by particles secured to the surface, wherein the particles have a fissured structure with elevations and/or depressions in the nanometer range; a process for making such a surface; and particles having a fissured structure with elevations and/or depressions in the nanometer range.
摘要:
The present invention relates to a vapor-pervious water-impervious substrate, preferably a fibrous nonwoven web, which can be used in particular as a textile continuous sheet material, for example as an awning or as an inlet in apparel. The substrate according to the present invention may have self-cleaning properties. The substrate according to the present invention is simple to produce in an at least two-step process wherein a coating on the fibers of the substrate is produced in the first step and then hydrophobic particles are applied to the coated fibers by means of an adhesion promoter.
摘要:
The present invention relates to a vapor-pervious water-impervious substrate, preferably a fibrous nonwoven web, which can be used in particular as a textile continuous sheet material, for example as an awning or as an inlet in apparel. The substrate according to the present invention may have self-cleaning properties. The substrate according to the present invention is simple to produce in an at least two-step process wherein a coating on the fibers of the substrate is produced in the first step and then hydrophobic particles are applied to the coated fibers by means of an adhesion promoter.
摘要:
Diffuse-reflection surfaces which have a matte appearance and which have self-cleaning properties and preferably have antimicrobial properties, are prepared by coating a substrate with a random distribution of the particles to at least one surface of a substrate, thereby providing a surface comprising elevations with a height of from 20 nm to 100 μm and with a separation of less than 100 μm between the elevations. Such diffuse-reflection surfaces can be used as protective covers or as protective layers, in particular for providing non-angle-dependent viewing. The diffuse reflection surfaces of the present invention have self-cleaning properties and are resistant to colonization by microorganisms.
摘要:
The present invention describes a process for preparing a surfactant-free suspension including hydrophobic particles and at least 50.01% by weight of water, where hydrophobic, nanostructured particles are suspended in at least one organic solvent miscible with water and having a boiling point below 150° C., and then this concentrated organic suspension is intensively and thoroughly mixed with surfactant-free water.
摘要:
The invention relates to injection moldings with surfaces which have self-cleaning properties, and also to a simple process for producing the self-cleaning surfaces. The process of the invention is very simple, since it can make use of currently available equipment. Injection molded parts are usually produced by means of injection molds into which the material is injected. The process of the invention makes use of this process in that prior to the actual injection-molding process microparticles are applied to the injection mold and, during the injection-molding process, are transferred to the injection-molded part in that the particles are pressed into the surface of the injection-molded part. The process of the invention gives access to self-cleaning surfaces which have particles with a fissured structure, without any need to apply an additional emboss layer or foreign-material backing layer to the molding. Injection moldings of the invention may be three-dimensional articles of almost any type.
摘要:
A self-cleaning surface which has an artificial, at least partially hydrophobic, surface structure containing elevations and depressions, which comprises a surface having structure-forming particles, which are formed of hydrophobic, fumed silica, adhered thereto by way of fixative particles applied to the surface, whereby the structure-forming particles and the fixative particles have elevations and depressions ranging in dimensions of 1 to 1000 nm and the particles themselves having an average size of less than 50 μm, the particles providing said surface structure of elevations and depressions, wherein, by incipient melting of the fixative particles, only partial melting of the fixative particles occurs which is sufficient to bond the structure forming particles without substantial wetting of the particles by the fixative particles to said surface while retaining, the fissured structure of the structure-forming particles in the nanometer range.
摘要:
The present invention describes a process for preparing a surfactant-free suspension including hydrophobic particles and at least 50.01% by weight of water, where hydrophobic, nanostructured particles are suspended in at least one organic solvent miscible with water and having a boiling point below 150° C., and then this concentrated organic suspension is intensively and thoroughly mixed with surfactant-free water.