摘要:
A substrate having a plurality of zones is polished and spectra are measured. For each zone, a first linear function fits a sequence of index values associated with reference spectra that best match the measured spectra. A projected time at which a reference zone will reach the target index value is determined based on the first linear function, and for at least one adjustable zone, a polishing parameter adjustment is calculated such that the adjustable zone has closer to the target index at the projected time than without such adjustment. The adjustment is calculated based on a feedback error calculated for a previous substrate. The feedback error for a subsequent substrate is calculated based on a second linear function that fits a sequence of index values associated with reference spectra that best match spectra measured after the polishing parameter is adjusted.
摘要:
Embodiments described herein use closed-loop control (CLC) of conditioning sweep to enable uniform groove depth removal across the pad, throughout pad life. A sensor integrated into the conditioning arm enables the pad stack thickness to be monitored in-situ and in real time. Feedback from the thickness sensor is used to modify pad conditioner dwell times across the pad surface, correcting for drifts in the pad profile that may arise as the pad and disk age. Pad profile CLC enables uniform reduction in groove depth with continued conditioning, providing longer consumables lifetimes and reduced operating costs.
摘要:
A method and apparatus for conditioning a polishing pad is provided. The conditioning element is held by a conditioning arm rotatably mounted to a base at a pivot point. An actuator pivots the arm about the pivot point. The conditioning element is urged against the surface of the polishing pad, and translated with respect to the polishing pad to remove material from the polishing pad and roughen its surface. The interaction of the abrasive conditioning surface with the polishing pad surface generates a frictional force. The frictional force may be monitored by monitoring the torque applied to the pivot point, and material removal controlled thereby. The conditioning time, down force, translation rate, or rotation of the conditioning pad may be adjusted based on the measured torque.
摘要:
A method and apparatus for conditioning a polishing pad in a CMP system is provided. In one embodiment, a method for conditioning a polishing pad includes applying a down force to the conditioning disk that urges the conditioning disk against the polishing pad, measuring a torque required to sweep the conditioning disk across the polishing pad, determining a change in down force by comparing the measured torque to a model force profile (MFP), and adjusting the down force that the conditioning disk applies against the polishing pad in response to the determined change.
摘要:
A method and apparatus for conditioning a polishing pad is provided. The conditioning element is held by a conditioning arm rotatably mounted to a base at a pivot point. An actuator pivots the arm about the pivot point. The conditioning element is urged against the surface of the polishing pad, and translated with respect to the polishing pad to remove material from the polishing pad and roughen its surface. The interaction of the abrasive conditioning surface with the polishing pad surface generates a frictional force. The frictional force may be monitored by monitoring the torque applied to the pivot point, and material removal controlled thereby. The conditioning time, down force, translation rate, or rotation of the conditioning pad may be adjusted based on the measured torque.
摘要:
A substrate having a plurality of zones is polished and spectra are measured. For each zone, a first linear function fits a sequence of index values associated with reference spectra that best match the measured spectra. A projected time at which a reference zone will reach the target index value is determined based on the first linear function, and for at least one adjustable zone, a polishing parameter adjustment is calculated such that the adjustable zone has closer to the target index at the projected time than without such adjustment. The adjustment is calculated based on a feedback error calculated for a previous substrate. The feedback error for a subsequent substrate is calculated based on a second linear function that fits a sequence of index values associated with reference spectra that best match spectra measured after the polishing parameter is adjusted.
摘要:
A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
摘要:
A platen for chemical mechanical polishing of a substrate includes a surface upon which a polishing pad can be placed, a support structure, and a controller. The surface has a first region and a second region and is operable to exert force against the polishing pad during polishing. The support structure is located beneath the second region and is operable to cause the second region to exert more force than the first region. The controller is operable to adjust the amount of force that is exerted by the second region.
摘要:
In a first aspect of the invention, a polishing device is provided. The polishing device includes a platen adapted to support a polishing pad and also includes a source of polishing slurry. Also included in the polishing device is a slurry supply line adapted to supply the polishing slurry from the source of polishing slurry to the polishing pad. The polishing device includes a pressure transducer installed along the slurry supply line and adapted to detect a pressure inside the slurry supply line. Numerous other aspects are provided.
摘要:
Embodiments described herein use closed-loop control (CLC) of conditioning sweep to enable uniform groove depth removal across the pad, throughout pad life. A sensor integrated into the conditioning arm enables the pad stack thickness to be monitored in-situ and in real time. Feedback from the thickness sensor is used to modify pad conditioner dwell times across the pad surface, correcting for drifts in the pad profile that may arise as the pad and disk age. Pad profile CLC enables uniform reduction in groove depth with continued conditioning, providing longer consumables lifetimes and reduced operating costs.