摘要:
A method for fabricating polycrystalline silicon resistor structures includes steps directed to the provision of a polycrystalline silicon structure having a decreased width. In one embodiment, sidewall spacers are used to narrow a region in which the polycrystalline silicon resistors are formed. In an alternative embodiment, polycrystalline silicon resistors are formed as sidewall structures in a resistor region. Use of either technique provides a reduced cross-section for the resistor structures, allowing shorter resistors to be used, or providing increased resistance for longer resistors.
摘要:
A method is provided for improving the adhesion between a photoresist layer and a dielectric, and an integrated circuit formed according to the same. A conformal dielectric layer is formed over the integrated circuit. An interlevel dielectric layer is formed over the conformal dielectric layer. The interlevel dielectric layer is doped such that the doping concentration allows the layer to reflow while partially inhibiting the adhesion of the doped layer to photoresist at an upper surface of the doped layer. An undoped dielectric layer is formed over the doped dielectric layer. A photoresist layer is formed and patterned over the undoped dielectric layer which adheres to the undoped dielectric layer. The undoped dielectric, the interlevel dielectric and the conformal dielectric layers are etched to form an opening exposing a portion of an underlying conductive region.
摘要:
A method is provided for forming a substantially planarized surface of an integrated circuit, and an integrated circuit formed according to the same. A conductive area is formed over a portion of a dielectric region. A first spin-on-glass layer is formed over the conductive area and exposed dielectric region. A second spin-on-glass layer is formed over the first spin-on-glass layer; wherein the second spin-on-glass layer has a slower etch rate than the first spin-on-glass layer. A partial etchback of the first and second spin-on-glass layers is performed forming a substantially planar surface.
摘要:
A method for forming integrated circuit structures includes the formation of high-value resistive elements and low resistance interconnect in a single polycrystalline layer. In one embodiment, interconnect regions of the polycrystalline silicon layer are masked, and resistive element regions are partially oxidized to reduce the thickness of the polycrystalline layer in such regions. Resistivity of the interconnect regions may then be reduced by implanting a high level of impurities in them, or by forming a refractory metal silicide layer over the interconnect regions. The oxide formed over the resistive elements during the oxidation thereof protects them from either of the following process steps, so that no masking is required. In an alternative embodiment, silicidation of the interconnect regions of the polycrystalline silicon layer may be performed without the prior local oxidations of the resistive element regions.
摘要:
A method for forming integrated circuit structures includes the formation of high-value resistive elements and low resistance interconnect in a single polycrystalline layer. In one embodiment, interconnect regions of the polycrystalline silicon layer are masked, and resistive element regions are partially oxidized to reduce the thickness of the polycrystalline layer in such regions. Resistivity of the interconnect regions may then be reduced by implanting a high level of impurities in them, or by forming a refractory metal silicide layer over the interconnect regions. The oxide formed over the resistive elements during the oxidation thereof protects them from either of the following process steps, so that no masking is required. In an alternative embodiment, silicidation of the interconnect regions of the polycrystalline silicon layer may be performed without the prior local oxidations of the resistive element regions.
摘要:
A resistor structure suitable for use in an SRAM cell is formed from polycrystalline silicon elements. These elements have a cross-section which is less than is normally available for polycrystalline silicon interconnect lines, allowing increased resistance values to be implemented using a lesser amount of surface area. In one embodiment of a resistor, sidewall spacers are formed in a cavity within an insulating layer, and polycrystalline silicon resistive elements are formed in the narrowed region within the cavity. In another embodiment, polycrystalline silicon resistors alongside vertical sidewalls of a cavity are formed using sidewall spacer technology. In either event, the cross-sectional area of the resistors is less than that normally available for a given processing technology, resulting in enhanced resistor values.
摘要:
A protective barrier layer, formed of a material such as titanium or titanium nitride for which removal by chemical mechanical polishing (CMP) is primarily mechanical rather than primarily chemical, formed on a conformal tungsten layer. During subsequent CMP to pattern the tungsten layer, upper topological regions of the protective barrier layer (such as those overlying interlevel dielectric regions) are removed first, exposing the tungsten under those regions to removal, while protective barrier layer regions over lower topological regions (such as openings within the interlevel dielectric) remain to prevent chemical attack of underlying tungsten. CMP patterned tungsten is thus substantially planar with the interlevel dielectric without dishing, even in large area tungsten structures such as MOS capacitor structures.
摘要:
A protective barrier layer, formed of a material such as titanium or titanium nitride for which removal by chemical mechanical polishing (CMP) is primarily mechanical rather than primarily chemical, formed on a conformal tungsten layer. During subsequent CMP to pattern the tungsten layer, upper topological regions of the protective barrier layer (such as those overlying interlevel dielectric regions) are removed first, exposing the tungsten under those regions to removal, while protective barrier layer regions over lower topological regions (such as openings within the interlevel dielectric) remain to prevent chemical attack of underlying tungsten. CMP patterned tungsten is thus substantially planar with the interlevel dielectric without dishing, even in large area tungsten structures such as MOS capacitor structures.
摘要:
A method is provided for improving the adhesion between a photoresist layer and a dielectric, and an integrated circuit formed according to the same. A conformal dielectric layer is formed over the integrated circuit. An interlevel dielectric layer is formed over the conformal dielectric layer. The interlevel dielectric layer is doped such that the doping concentration allows the layer to reflow while partially inhibiting the adhesion of the doped layer to photoresist at an upper surface of the doped layer. An undoped dielectric layer is formed over the doped dielectric layer. A photoresist layer is formed and patterned over the undoped dielectric layer which adheres to the undoped dielectric layer. The undoped dielectric, the interlevel dielectric and the conformal dielectric layers are etched to form an opening exposing a portion of an underlying conductive region.
摘要:
An integrated circuit structure contains both highly resistive regions and highly conductive interconnect regions in a single layer of polycrystalline silicon. The resistive regions have a smaller cross section than the interconnect regions as a result of partial oxidation. Their thickness and width are reduced from that of the interconnect regions. The partial oxidation leaves an oxide region, derived from polycrystalline silicon, on both the top and sides of the resistive regions.