Abstract:
A system and method for interfacing a memory controller and a source synchronous memory utilizing a generic low power strobe. A set of double rate (2×) strobes can be generated by gating a continuous double rate clock in order to enable the set of double rate strobes only for duration of a data transfer from controller to the memory. The data and control from a SDR continuous single rate (1×) clock domain with respect to the memory controller can be moved to a set of double rate clock domain by sampling with the set of double rate strobes. The phase of the set of double rate strobes can be shifted in relation to the continuous single rate clock and a phase relationship of the generated synchronous signals to the memory can be dynamically switched by changing the phase of the set of double rate strobes. The set of double rate clock domain enables each bit-slice to be independently programmed to generate an output to the memory at each phase relative to the controller single rate clock.
Abstract:
A system and method are provided for reducing signal skew. The method includes receiving a netlist having components and connections among the components. Each connection has at least one signal wire. A plurality of net groups is identified, each net group including at least some of the connections and for which equivalent routing is desired. For each net group, the method includes systematically routing connection paths between the components for the connections, each connection path extending between an output of one of the components and an input to at least one other of the components and including at least one path fragment. Routing includes, for at least one of the connections of the net group, routing at least one grounded shielding wire in a routing channel adjacent and parallel to at least one of the path fragments of the connection path.
Abstract:
An input/output (I/O) cell including one or more driver-capable segments and one or more on-die termination (ODT) capable segments. The I/O cell may be configured as an output driver in a first mode and Thevenin equivalent termination in a second mode.
Abstract translation:输入/输出(I / O)单元包括一个或多个可驱动器段和一个或多个片上终端(ODT)能力段。 I / O单元可以被配置为处于第一模式的输出驱动器,并且在第二模式中将Ivenin等效终止。
Abstract:
A system and method for interfacing a memory controller and a source synchronous memory utilizing a generic low power strobe. A set of double rate (2×) strobes can be generated by gating a continuous double rate clock in order to enable the set of double rate strobes only for duration of a data transfer from controller to the memory. The data and control from a SDR continuous single rate (1×) clock domain with respect to the memory controller can be moved to a set of double rate clock domain by sampling with the set of double rate strobes. The phase of the set of double rate strobes can be shifted in relation to the continuous single rate clock and a phase relationship of the generated synchronous signals to the memory can be dynamically switched by changing the phase of the set of double rate strobes. The set of double rate clock domain enables each bit-slice to be independently programmed to generate an output to the memory at each phase relative to the controller single rate clock.
Abstract:
A system for reducing the signal delay skew is disclosed, according to a variety of embodiments. One illustrative embodiment of the present disclosure is directed to a method. According to one illustrative embodiment, the method includes receiving an initial netlist comprising components and connection paths among the components. The method further includes identifying one or more skew-influencing features in a first connection path in the initial netlist that lack corresponding skew-influencing features in a second connection path in the initial netlist. The method also includes generating a skew-corrected netlist wherein the second connection path includes one or more added skew-influencing features corresponding to those of the first connection path. The method further includes outputting the skew-corrected netlist.
Abstract:
An input/output (I/O) cell including one or more driver-capable segments and one or more on-die termination (ODT) capable segments. The I/O cell may be configured as an output driver in a first mode and Thevenin equivalent termination in a second mode.
Abstract translation:输入/输出(I / O)单元包括一个或多个可驱动器段和一个或多个片上终端(ODT)能力段。 I / O单元可以被配置为处于第一模式的输出驱动器,并且在第二模式中将Ivenin等效终止。
Abstract:
An apparatus comprising a control circuit, a buffer circuit and a memory. The control circuit may be configured to present a plurality of pairs of signals in response to (i) one or more input signals operating at a first data rate and (ii) an input clock signal operating at a second data rate. The second signal in each of the pairs comprises a clock signal operating at the second data rate. The buffer circuit may be configured to generate a buffered signal in response to each of the pairs of signals. Each of the buffered signals operates at the second data rate. The memory may be configured to read and write data at the second data rate in response to the buffered signals.
Abstract:
An instruction processor suitable for use in a reduced instruction-set computer employs an instruction pipeline which performs conditional branching in a single processor cycle. The processor treats a branch condition as a normal instruction operand rather than a special case within a separate condition code register. The condition bit and the branch target address determine which instruction is to be fetched, the branch not taking effect until the next-following instruction is executed. In this manner, no replacement of the instruction which physically follows the branch instruction in the pipeline need be made, and the branch occurs within the single cycle of the pipeline allocated to it. A simple circuit implements this delayed-branch method. A computer incorporating the processor readily executes special-handling techniques for calls on subroutine, interrupts and traps.
Abstract:
A system and method are provided for reducing the signal delay skew is disclosed, according to a variety of embodiments. One illustrative embodiment of the present disclosure is directed to a method. According to one illustrative embodiment, the method includes receiving an initial netlist having components and connection paths among the components; identifying a first connection path in the initial netlist that comprises path fragments for which there are no equivalent path fragments in a second connection path in the initial netlist; generating a skew-corrected netlist wherein the second connection path is re-routed to have path fragments equivalent to the path fragments of the first connection path; and outputting the skew-corrected netlist.
Abstract:
An apparatus comprising a control circuit, a buffer circuit and a memory. The control circuit may be configured to present a plurality of pairs of signals in response to (i) one or more input signals operating at a first data rate and (ii) an input clock signal operating at a second data rate. The second signal in each of the pairs comprises a clock signal operating at the second data rate. The buffer circuit may be configured to generate a buffered signal in response to each of the pairs of signals. Each of the buffered signals operates at the second data rate. The memory may be configured to read and write data at the second data rate in response to the buffered signals.