Abstract:
A method for closed loop controlling the air system in an internal combustion engine, in particular a diesel internal combustion engine with a first actuating element for recirculated exhaust gas in the exhaust gas recirculation tract and a second actuating element for air in the inlet tract, the two actuating elements being adjusted as a function of each other. In order to increase the quality of closed loop control, provision is made for each actuating element to be controlled separately by its own respective controller, each controller being optimally configured for the respective controlled system, and a target value being provided for each controller.
Abstract:
According to the invention, noise of an internal combustion engine is reduced by dynamically correcting the moment of injection when the engine is in the transient mode.
Abstract:
According to the invention, noise of an internal combustion engine is reduced by dynamically correcting the moment of injection when the engine is in the transient mode.
Abstract:
In a method for closed loop controlling the air system in an internal combustion engine, in particular a diesel internal combustion engine with a first actuating element for recirculated exhaust gas in the exhaust gas recirculation tract and a second actuating element for air in the inlet tract, the two actuating elements being adjusted as a function of each other. In order to increase the quality of closed loop control, provision is made for each actuating element to be controlled separately by its own respective controller, each controller being optimally configured for the respective controlled system, and a target value being provided for each controller.
Abstract:
In a method for closed loop controlling the air system in an internal combustion engine, in particular a diesel internal combustion engine with a first actuating element for recirculated exhaust gas in the exhaust gas recirculation tract and a second actuating element for air in the inlet tract, the two actuating elements being adjusted as a function of each other. In order to increase the quality of closed loop control, provision is made for each actuating element to be controlled separately by its own respective controller, each controller being optimally configured for the respective controlled system, and a target value being provided for each controller.
Abstract:
According to the invention, noise of an internal combustion engine is reduced by dynamically correcting the moment of injection when the engine is in the transient mode.
Abstract:
For the establishment of a crank-angle based signal pattern with high discrimination representing a relevant working characteristic of an internal combustion engine, the working characteristic is detected with high time discrimination and with the aid of a time-based and angled-based crank-angle signal of low angle discrimination and transformed to a crank-angle basis under interpolation, and whereby there is assigned to the top dead center (OT) of the respective cylinder, by a multiple, a freely selectable angle increment under interpolation with high angle discrimination.
Abstract:
The nozzles are in the form of blowing-in openings in the housing wall which bounds the flow channel. The blowing-in openings are fed directly by means of air which is extracted from the flow channel downstream from the diffusor. This air is at a higher pressure than the flow in the flow channel upstream of the diffusor. This results in a passive, dynamic stabilization system for a compressor stage in the high pressure-ratio range, which does not require any additional control or actuating elements.
Abstract:
A method of regulating or controlling a cyclically operating internal combustion engine using a computation model by which the cycle or portions of the cycle of the internal combustion engine is, or are, divided into individual parts and the operating condition within each cycle part is determined using measured values, stored and/or applied data in order to obtain actuating variables for operating the internal combustion engine. The computation models for the various individual cycle parts are based on at least partially different assumptions and/or have different simplifications. The time limits of the cycle parts are at least partially calculated as a function of at least one variable engine operating parameter. The operating status of an internal combustion engine can thus be determined readily and quickly while still with sufficient accuracy so as to obtain actuating variables suited for regulating or controlling the internal combustion engine using electronic control units available for series operation.
Abstract:
The invention is directed to a method for adjusting the air/fuel ratio for an internal combustion engine having a catalytic converter connected downstream thereof which is capable of storing oxygen. In this method, the oxygen components in the exhaust gas of the engine are detected upstream of the catalytic converter and downstream thereof and the adjustment of the fuel/air ratio is influenced. In the method, a measure for the instantaneous oxygen fill level of the catalytic converter is determined from the above-mentioned oxygen components with the aid of a model. Data as to the state of deterioration of the catalytic converter are derived from the model parameters. The air/fuel ratio is so adjusted that the oxygen fill level of the catalytic converter is held to a constant mean level.